Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibitory synapses in the developing auditory system are glutamatergic

Abstract

Activity-dependent synapse refinement is crucial for the formation of precise excitatory and inhibitory neuronal circuits. Whereas the mechanisms that guide refinement of excitatory circuits are becoming increasingly clear, the mechanisms guiding inhibitory circuits have remained obscure. In the lateral superior olive (LSO), a nucleus in the mammalian sound localization system that receives inhibitory input from the medial nucleus of the trapezoid body (MNTB), specific elimination and strengthening of synapses that are both GABAergic and glycinergic (GABA/glycinergic synapses) is essential for the formation of a precise tonotopic map. We provide evidence that immature GABA/glycinergic synapses in the rat LSO also release the excitatory neurotransmitter glutamate, which activates postsynaptic NMDA receptors (NMDARs). Immunohistochemical studies demonstrate synaptic colocalization of the vesicular glutamate transporter 3 with the vesicular GABA transporter, indicating that GABA, glycine and glutamate are released from single MNTB terminals. Glutamatergic transmission at MNTB-LSO synapses is most prominent during the period of synapse elimination. Synapse-specific activation of NMDARs by glutamate release at GABAergic and glycinergic synapses could be important in activity-dependent refinement of inhibitory circuits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical stimulation of the MNTB causes release of glutamate at synapses in the LSO.
Figure 2: The glutamatergic response arises from cell bodies of the MNTB.
Figure 3: Minimal stimulation in a P7 LSO neuron in normal ACSF elicits a mixed GABA/glycine and glutamate response.
Figure 4: Developmental profile of the glutamatergic response.
Figure 5: Immunostaining for vesicular transporters in the LSO.
Figure 6: Immunostaining for vesicular transporters VGAT and VGLUT3 in cells of the MNTB.

Similar content being viewed by others

References

  1. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  2. Hendry, S.H. & Jones, E.G. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature 320, 750–753 (1986).

    Article  CAS  Google Scholar 

  3. Otis, T.S., DeKoninck, Y. & Mody, I. Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc. Natl. Acad. Sci. USA 91, 7698–7702 (1994).

    Article  CAS  Google Scholar 

  4. Micheva, K.D. & Beaulieu, C. An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. Proc. Natl. Acad. Sci. USA 92, 11834–11838 (1995).

    Article  CAS  Google Scholar 

  5. Korada, S. & Schwartz, I.R. Development of GABA, glycine, and their receptors in the auditory brainstem of gerbil: a light and electron microscopic study. J. Comp. Neurol. 409, 664–681 (1999).

    Article  CAS  Google Scholar 

  6. Kilman, V., van Rossum, M.C. & Turrigiano, G.G. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neurocortical synapses. J. Neurosci. 22, 1328–1337 (2002).

    Article  CAS  Google Scholar 

  7. Woodin, M.A., Ganguly, K. & Poo, M.M. Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl transporter activity. Neuron 39, 807–820 (2003).

    Article  CAS  Google Scholar 

  8. Kandler, K. Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Curr. Opin. Neurobiol. 14, 96–104 (2004).

    Article  CAS  Google Scholar 

  9. Boudreau, J.C. & Tsuchitani, C. Binaural interaction in the cat superior olive S segment. J. Neurophysiol. 31, 442–454 (1968).

    Article  CAS  Google Scholar 

  10. Moore, M.J. & Caspary, D.M. Strychnine blocks binaural inhibition in lateral superior olivary neurons. J. Neurosci. 3, 237–242 (1983).

    Article  CAS  Google Scholar 

  11. Kotak, V.C., Korada, S., Schwartz, I.R. & Sanes, D.H. A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J. Neurosci. 18, 4646–4655 (1998).

    Article  CAS  Google Scholar 

  12. Nabekura, J. et al. Developmental switch from GABA to glycine release in single central synaptic terminals. Nat. Neurosci. 7, 17–23 (2004).

    Article  CAS  Google Scholar 

  13. Kim, G. & Kandler, K. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nat. Neurosci. 6, 282–290 (2003).

    Article  CAS  Google Scholar 

  14. Sanes, D.H. & Friauf, E. Development and influence of inhibition in the lateral superior olivary nucleus. Hear. Res. 147, 46–58 (2000).

    Article  CAS  Google Scholar 

  15. Kandler, K. & Friauf, E. Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J. Neurosci. 15, 6890–6904 (1995).

    Article  CAS  Google Scholar 

  16. Ahmadi, S. et al. Facilitation of spinal NMDA receptor currents by spillover of synaptically released glycine. Science 300, 2094–2097 (2003).

    Article  CAS  Google Scholar 

  17. Schwartz, I. The superior olivary complex and lateral lemniscal nuclei. in The Mammalian Auditory Pathway: Neuroanatomy (eds. Popper, A.N., Fay, R.R. & Webster, D.B.) 117–167 (Springer, New York, 1992).

    Chapter  Google Scholar 

  18. Chatterton, J.E. et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415, 793–798 (2002).

    Article  CAS  Google Scholar 

  19. Kullmann, P.H. & Kandler, K. Glycinergic/GABAergic synapses in the lateral superior olive are excitatory in neonatal C57B1/6J mice. Brain Res. Dev. Brain Res. 131, 143–147 (2001).

    Article  CAS  Google Scholar 

  20. Lohmann, C., Ehrlich, I. & Friauf, E. Axon regeneration in organotypic slice cultures from the mammalian auditory system is topographic and functional. J. Neurobiol. 41, 596–611 (1999).

    Article  CAS  Google Scholar 

  21. Stevens, C.F. & Wang, Y. Facilitation and depression at single central synapses. Neuron 14, 795–802 (1995).

    Article  CAS  Google Scholar 

  22. Aamodt, S.M., Shi, J., Colonnese, M.T., Veras, W. & Constantine-Paton, M. Chronic NMDA exposure accelerates development of GABAergic inhibition in the superior colliculus. J. Neurophysiol. 83, 1580–1591 (2000).

    Article  CAS  Google Scholar 

  23. Gaiarsa, J.L., Caillard, O. & Ben-Ari, Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 25, 564–570 (2002).

    Article  CAS  Google Scholar 

  24. Dickson, K.S. & Kind, P.C. NMDA receptors: neural map designers and refiners? Curr. Biol. 13, R920–R922 (2003).

    Article  CAS  Google Scholar 

  25. Ehrlich, I., Lohrke, S. & Friauf, E. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurons is due to age-dependent Cl regulation. J. Physiol. (Lond.) 520, 121–137 (1999).

    Article  CAS  Google Scholar 

  26. Fon, E.A. & Edwards, R.H. Molecular mechanisms of neurotransmitter release. Muscle Nerve 24, 581–601 (2001).

    Article  CAS  Google Scholar 

  27. Helfert, R.H., Bonneau, J.M., Wenthold, R.J. & Altschuler, R.A. GABA and glycine immunoreactivity in the guinea pig superior olivary complex. Brain Res. 501, 269–286 (1989).

    Article  CAS  Google Scholar 

  28. Bledsoe, S.C. Jr. et al. Immunocytochemical and lesion studies support the hypothesis that the projection from the medial nucleus of the trapezoid body to the lateral superior olive is glycinergic. Brain Res. 517, 189–194 (1990).

    Article  Google Scholar 

  29. Docherty, M., Bradford, H.F. & Wu, J.Y. Co-release of glutamate and aspartate from cholinergic and GABAergic synaptosomes. Nature 330, 64–66 (1987).

    Article  CAS  Google Scholar 

  30. O'Malley, D.M. & Masland, R.H. Co-release of acetylcholine and gamma-a2inobutyric acid by a retinal neuron. Proc. Natl. Acad. Sci. USA 86, 3414–3418 (1989).

    Article  CAS  Google Scholar 

  31. Jonas, P., Bischofberger, J. & Sandkuhler, J. Corelease of two fast neurotransmitters at a central synapse. Science 281, 419–424 (1998).

    Article  CAS  Google Scholar 

  32. Walker, M.C., Ruiz, A. & Kullmann, D.M. Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 29, 703–715 (2001).

    Article  CAS  Google Scholar 

  33. Gutierrez, R. et al. Plasticity of the GABAergic phenotype of the 'glutamatergic' granule cells of the rat dentate gyrus. J. Neurosci. 23, 5594–5598 (2003).

    Article  CAS  Google Scholar 

  34. Glendenning, K.K., Masterton, R.B., Baker, B.N. & Wenthold, R.J. Acoustic chiasm. III: Nature, distribution, and sources of afferents to the lateral superior olive in the cat. J. Comp. Neurol. 310, 377–400 (1991).

    Article  CAS  Google Scholar 

  35. Helfert, R.H. et al. Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig. J. Comp. Neurol. 323, 305–325 (1992).

    Article  CAS  Google Scholar 

  36. Kullmann, P.H., Ene, F.A. & Kandler, K. Glycinergic and GABAergic calcium responses in the developing lateral superior olive. Eur. J. Neurosci. 15, 1093–1104 (2002).

    Article  Google Scholar 

  37. Ene, F.A., Kullmann, P.H., Gillespie, D.C. & Kandler, K. Glutamatergic calcium responses in the developing lateral superior olive: receptor types and their specific activation by synaptic activity patterns. J. Neurophysiol. 90, 2581–2591 (2003).

    Article  CAS  Google Scholar 

  38. Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O. & Gaiarsa, J.L. GABAA, NMDA and AMPA receptors: a developmentally regulated 'menage a trois'. Trends Neurosci. 20, 523–529 (1997).

    Article  CAS  Google Scholar 

  39. Bellocchio, E.E., Reimer, R.J., Fremeau, R.T. & Edwards, R.H. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957–960 (2000).

    Article  CAS  Google Scholar 

  40. Wojcik, S.M. et al. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc. Natl. Acad. Sci. USA 101, 7158–7163 (2004).

    Article  CAS  Google Scholar 

  41. Fremeau, R.T. et al. Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304, 1815–1819 (2004).

    Article  CAS  Google Scholar 

  42. Fremeau, R.T. Jr., Voglmaier, S., Seal, R.P. & Edwards, R.H. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 27, 98–103 (2004).

    Article  CAS  Google Scholar 

  43. Harkany, T. et al. Endocannabinoid-independent retrograde signaling at inhibitory synapses in layer 2/3 of neocortex: involvement of vesicular glutamate transporter 3. J. Neurosci. 24, 4978–4988 (2004).

    Article  CAS  Google Scholar 

  44. Lynch, J.W. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84, 1051–1095 (2004).

    Article  CAS  Google Scholar 

  45. Malinow, R. AMPA receptor trafficking and long-term potentiation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 707–714 (2003).

    Article  CAS  Google Scholar 

  46. Furuta, A., Rothstein, J.D. & Martin, L.J. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci. 17, 8363–8375 (1997).

    Article  CAS  Google Scholar 

  47. McLean, H.A., Caillard, O., Ben-Ari, Y. & Gaiarsa, J.L. Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus. J. Physiol. (Lond.) 496, 471–477 (1996).

    Article  CAS  Google Scholar 

  48. Morishita, W. & Sastry, B.R. Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J. Neurophysiol. 76, 59–68 (1996).

    Article  CAS  Google Scholar 

  49. Givens, R.S., Weber, J.F., Jung, A.H. & Park, C.H. New photoprotecting groups: desyl and p-hydroxyphenacyl phosphate and carboxylate esters. Methods Enzymol. 291, 1–29 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Cihil for technical assistance, R. Edwards for VGAT and VGLUT1/2 antibodies, R. Givens for caged glutamate, W. Halfter for SV2 antibodies, and P. Land, S. Shand and S. Watkins for lending histology advice and equipment. We are grateful to E. Aizenman, S. Amara, N.K. Baba, J. Johnson and L. Lillien for comments on an earlier version of the manuscript. This work was supported by grants from the National Institute on Deafness and Other Communication Disorders (K.K., D.C.G.) and the National Institute of Neurological Disorders and Stroke (D.C.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kandler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, D., Kim, G. & Kandler, K. Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 8, 332–338 (2005). https://doi.org/10.1038/nn1397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing