Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function

Abstract

CaBP1–8 are neuronal Ca2+-binding proteins with similarity to calmodulin (CaM). Here we show that CaBP4 is specifically expressed in photoreceptors, where it is localized to synaptic terminals. The outer plexiform layer, which contains the photoreceptor synapses with secondary neurons, was thinner in the Cabp4−/− mice than in control mice. Cabp4−/− retinas also had ectopic synapses originating from rod bipolar and horizontal cells tha HJt extended into the outer nuclear layer. Responses of Cabp4−/− rod bipolars were reduced in sensitivity about 100-fold. Electroretinograms (ERGs) indicated a reduction in cone and rod synaptic function. The phenotype of Cabp4−/− mice shares similarities with that of incomplete congenital stationary night blindness (CSNB2) patients. CaBP4 directly associated with the C-terminal domain of the Cav1.4 α1-subunit and shifted the activation of Cav1.4 to hyperpolarized voltages in transfected cells. These observations indicate that CaBP4 is important for normal synaptic function, probably through regulation of Ca2+ influx and neurotransmitter release in photoreceptor synaptic terminals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CaBP4 protein sequence, tissue distribution and immunolocalization.
Figure 2: Characterization of CaBP4 knockout mice.
Figure 3: Synaptic connection between photoreceptors and bipolar cells.
Figure 4: Current responses of Cabp4+/+ and Cabp4−/− rod outer segments.
Figure 5: Voltage-clamp responses of Cabp4+/+ and Cabp4−/− rod bipolars.
Figure 6: Single-flash ERG responses of increasing intensity for Cabp4−/− and Cabp4+/+ mice.
Figure 7: CaBP4 interacts with and modulates Cav1.4.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Zhang, N. & Townes-Anderson, E. Regulation of structural plasticity by different channel types in rod and cone photoreceptors. J. Neurosci. 22, 7065–7079 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nachman-Clewner, M., St Jules, R. & Townes-Anderson, E. L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J. Comp. Neurol. 415, 1–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Schmitz, F., Konigstorfer, A. & Sudhof, T.C. RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28, 857–872 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Schmitz, Y. & Witkovsky, P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 78, 1209–1216 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Barnes, S. & Kelly, M.E.M. Calcium channels at the photoreceptor synapse. in. Photorecept. Calcium 514, 465–476 (2002).

    CAS  Google Scholar 

  6. Morgans, C.W. Localization of the α1F calcium channel subunit in the rat retina. Invest. Ophthalmol. Vis. Sci. 42, 2414–2418 (2001).

    CAS  PubMed  Google Scholar 

  7. McRory, J.E. et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J. Neurosci. 24, 1707–1718 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baumann, L., Gerstner, A., Zong, X., Biel, M. & Wahl-Schott, C. Functional characterization of the L-type Ca2+ channel Cav1.4α1 from mouse retina. Invest. Ophthalmol. Vis. Sci. 45, 708–713 (2004).

    Article  PubMed  Google Scholar 

  9. Koschak, A. et al. Cav1.4α1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. J. Neurosci. 23, 6041–6049 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rieke, F. & Schwartz, E.A. A cGMP-gated current can control exocytosis at cone synapses. Neuron 13, 863–873 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Bech-Hansen, N.T. et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat. Genet. 26, 319–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Strom, T.M. et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat. Genet. 19, 260–263 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Ball, S.L. et al. Role of the β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest. Ophthalmol. Vis. Sci. 43, 1595–1603 (2002).

    PubMed  Google Scholar 

  14. Haeseleer, F. et al. Five members of a novel Ca2+-binding protein (CABP) subfamily with similarity to calmodulin. J. Biol. Chem. 275, 1247–1260 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, A. et al. Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1. Nat. Neurosci. 5, 210–217 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, J. et al. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc. Natl Acad. Sci. USA 99, 7711–7716 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haynes, L.P., Tepikin, A.V. & Burgoyne, R.D. Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J. Biol. Chem. 279, 547–555 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Koulen, P., Fletcher, E.L., Craven, S.E., Bredt, D.S. & Wassle, H. Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina. J. Neurosci. 18, 10136–10149 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Hooser, J.P. et al. Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc. Natl Acad. Sci. USA 97, 8623–8628 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grunert, U., Haverkamp, S., Fletcher, E.L. & Wassle, H. Synaptic distribution of ionotropic glutamate receptors in the inner plexiform layer of the primate retina. J. Comp. Neurol. 447, 138–151 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Nomura, A. et al. Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell 77, 361–369 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Dick, O. et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37, 775–786 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Baylor, D.A., Lamb, T.D. & Yau, K.W. Responses of retinal rods to single photons. J. Physiol. (Lond.) 288, 613–634 (1979).

    CAS  Google Scholar 

  24. Nakatani, K. & Yau, K.W. Calcium and magnesium fluxes across the plasma membrane of the toad rod outer segment. J. Physiol. (Lond.) 395, 695–729 (1988).

    Article  CAS  Google Scholar 

  25. Field, G.D. & Rieke, F. Nonlinear signal transfer from mouse rods to bipolar cells and implications for visual sensitivity. Neuron 34, 773–785 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Slaughter, M.M. & Miller, R.F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182–185 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Sampath, A.P. & Rieke, F. Selective transmission of single photon responses by saturation at the rod-to-rod bipolar synapse. Neuron 41, 431–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Pitt, G.S. et al. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J. Biol. Chem. 276, 30794–30802 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Erickson, M.G., Alseikhan, B.A., Peterson, B.Z. & Yue, D.T. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 31, 973–985 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Zuhlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, H. et al. Ca2+-binding protein-1 facilitates and forms a postsynaptic complex with Cav1.2 (L-type) Ca2+ channels. J. Neurosci. 24, 4698–4708 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baylor, D.A. & Fuortes, M.G. Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).

    Article  CAS  Google Scholar 

  33. Pate, P. et al. Determinants for calmodulin binding on voltage-dependent Ca2+ channels. J. Biol. Chem. 275, 39786–39792 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Peterson, B.Z., DeMaria, C.D. & Yue, D.T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of 1-type calcium channels. Neuron 22, 549–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Seidenbecher, C.I., Reissner, C. & Kreutz, M.R. Caldendrins in the inner retina. in. Photorecept. Calcium 514, 451–463 (2002).

    Article  CAS  Google Scholar 

  36. Dolmetsch, R. Excitation-transcription coupling: signaling by ion channels to the nucleus. Sci. STKE 2003, PE4 (2003).

    PubMed  Google Scholar 

  37. Deisseroth, K., Heist, E.K. & Tsien, R.W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Bading, H., Ginty, D.D. & Greenberg, M.E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Mao, Z.X., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M.E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Morgans, C.W., El Far, O., Berntson, A., Wassle, H. & Taylor, W.R. Calcium extrusion from mammalian photoreceptor terminals. J. Neurosci. 18, 2467–2474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morgans, C.W. Calcium channel heterogeneity among cone photoreceptors in the tree shrew retina. Eur. J. Neurosci. 11, 2989–2993 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Berntson, A., Taylor, W.R. & Morgans, C.W. Molecular identity, synaptic localization, and physiology o0f calcium channels in retinal bipolar cells. J. Neurosci. Res. 71, 146–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Bech-Hansen, N.T. et al. Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. 19, 264–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Haeseleer, F., Imanishi, Y., Saperstein, D.A. & Palczewski, K. Gene transfer mediated by recombinant baculovirus into mouse eye. Invest. Ophthalmol. Vis. Sci. 42, 3294–3300 (2001).

    CAS  PubMed  Google Scholar 

  45. Ellis, S.B. et al. Sequence and expression of messenger RNAs encoding the α1-subunit and α2-subunit of a Dhp-sensitive calcium channel. Science 241, 1661–1664 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Perezreyes, E. et al. Cloning and expression of a cardiac brain β-subunit of the L-type calcium channel. J. Biol. Chem. 267, 1792–1797 (1992).

    CAS  Google Scholar 

  47. Haeseleer, F. et al. Molecular characterization of a third member of the guanylyl cyclase–activating protein subfamily. J. Biol. Chem. 274, 6526–6535 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Imanishi, Y. et al. Characterization of retinal guanylate cyclase–activating protein 3 (GCAP3) from zebrafish to man. Eur. J. Neurosci. 15, 63–78 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Batten, M.L. et al. Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J. Biol. Chem. 279, 10422–10432 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Maeda, T. et al. Evaluation of the role of the retinal G protein–coupled receptor (RGR) in the vertebrate retina in vivo. J. Neurochem. 85, 944–956 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Baehr, P. Detwiler, T. Doan, S. Bajjalieh and A. Polans for comments on the manuscript. We thank Y. Kim, M. Batten, A. Alekseev and M. Kalnoky for technical assistance. Anti-mGluR6 and anti-SV2 antibodies were gifts from S. Nakanishi and S.M. Bajjalieh, respectively. This research was supported by National Institutes of Health grants EY09339 to K.P., EY014561 to F.H., EY11850 to F.R. and NS044922 to A.L., the Whitehall Foundation to A.L., a grant from Research to Prevent Blindness (RPB), Inc. to the Department of Ophthalmology at the University of Washington and a grant from the E.K. Bishop Foundation. K.P. is a RPB Senior Investigator. D.P. was supported by a Vision Core Grant EY01730.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Françoise Haeseleer or Krzysztof Palczewski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The mouse Cabp4 gene and the targeting construct. (PDF 251 kb)

Supplementary Fig. 2

Cross-section of retinas analyzed by transmission EM. (PDF 2395 kb)

Supplementary Fig. 3

Retina histology of six to eight-month-old Cabp4−/− and Cabp4+/+ mice. (PDF 403 kb)

Supplementary Fig. 4

ERG responses from Cabp4−/− and Cabp4+/+ mice. (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeseleer, F., Imanishi, Y., Maeda, T. et al. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 7, 1079–1087 (2004). https://doi.org/10.1038/nn1320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing