Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deficits in saccade target selection after inactivation of superior colliculus

Abstract

Saccades are rapid eye movements that orient gaze toward areas of interest in the visual scene. Neural activity correlated with saccade target selection has been identified in several brain regions, including the superior colliculus (SC), but it is not known whether the SC is directly involved in target selection, or whether the SC merely receives selection-related signals from cortex in preparation for the execution of eye movements. In monkeys, we used focal reversible inactivation to test the functional contributions of the SC to target selection during visual search, and found that inactivation resulted in clear deficits. When a target appeared in the inactivated field, saccades were often misdirected to distractor stimuli. Control tasks showed that this deficit was not caused by low-level visual or motor impairments. Our results indicate that, in addition to its well-established involvement in movement execution, the SC has an important functional role in target selection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of SC inactivation on saccades in single-stimulus trials.
Figure 2: Effects of SC inactivation on saccades in search trials.
Figure 3: Histograms of normalized saccade endpoint direction in search.
Figure 4: Histograms of normalized saccade endpoint direction across the six muscimol injection sites.
Figure 5: Effects of SC inactivation on saccade latency and amplitude gain in search.
Figure 6: Performance in the visual control task.
Figure 7: Search performance and perceptual discriminability of the target.

Similar content being viewed by others

References

  1. Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985).

    CAS  PubMed  Google Scholar 

  2. Findlay, J.M. & Walker, R. A model of saccade generation based on parallel processing and competitive inhibition. Behav. Brain Sci. 22, 661–674 (1999).

    CAS  PubMed  Google Scholar 

  3. Clark, J.J. Spatial attention and latencies of saccadic eye movements. Vision Res. 39, 585–602 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Itti, L. & Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 40, 1489–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Wolfe, J.M. Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev. 1, 202–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Raybourn, M.S. & Keller, E.L. Colliculoreticular organization in primate oculomotor system. J. Neurophysiol. 40, 861–878 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Miyashita, N. & Hikosaka, O. Minimal synaptic delay in the saccadic output pathway of the superior colliculus studied in awake monkey. Exp. Brain Res. 112, 187–196 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Chimoto, S., Iwamoto, Y., Shimazu, H. & Yoshida, K. Monosynaptic activation of medium-lead burst neurons from the superior colliculus in the alert cat. J. Neurophysiol. 75, 2658–2661 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Sparks, D.L. & Hartwich-Young, R. The deep layers of the superior colliculus. in The Neurobiology of Saccadic Eye Movements, Reviews of Oculomotor Research Vol. 3 (eds. Wurtz, R.H. & Goldberg, M.E.) 213–256 (Elsevier, Amsterdam, 1989).

    Google Scholar 

  10. Mohler, C.W., Goldberg, M.E. & Wurtz, R.H. Visual receptive fields of frontal eye field neurons. Brain Res. 61, 385–389 (1973).

    Article  CAS  PubMed  Google Scholar 

  11. Ottes, F.P., Van Gisbergen, J.A.M. & Eggermont, J.J. Collicular involvement in a saccadic colour discrimination task. Exp. Brain Res. 66, 465–478 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. McPeek, R.M. & Keller, E.L. Saccade target selection in the superior colliculus during a visual search task. J. Neurophysiol. 88, 2019–2034 (2002).

    Article  PubMed  Google Scholar 

  13. Schall, J.D. & Thompson, K.G. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22, 241–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Burman, D.D. & Segraves, M.A. Primate frontal eye field activity during natural scanning eye movements. J. Neurophysiol. 71, 1266–1271 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, J.N. & Shadlen, M.N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).

    Article  PubMed  Google Scholar 

  16. Olson, C.R., Gettner, S.N., Ventura, V., Carta, R. & Kass, R.E. Neuronal activity in macaque supplementary eye field during planning of saccades in response to pattern and spatial cues. J. Neurophysiol. 84, 1369–1384 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hasegawa, R.P., Matsumoto, M. & Mikami, A. Search target selection in monkey prefrontal cortex. J. Neurophysiol. 84, 1692–1696 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Platt, M.L. & Glimcher, P.W. Responses of intraparietal neurons to saccadic targets and visual distractors. J. Neurophysiol. 78, 1574–1589 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Goldberg, M.E., Bisley, J., Powell, K.D., Gottlieb, J. & Kusunoki, M. The role of the lateral intraparietal area of the monkey in the generation of saccades and visuospatial attention. Ann. NY Acad. Sci. 956, 205–215 (2002).

    Article  PubMed  Google Scholar 

  21. Wurtz, R.H., Goldberg, M.E. & Robinson, D.L. Behavioral modulation of visual responses in the monkey: stimulus selection for attention and movement. Prog. Psychobiol. Physiol. Psychol. 9, 43–83 (1980).

    Google Scholar 

  22. Glimcher, P.W. & Sparks, D.L. Movement selection in advance of action in the superior colliculus. Nature 355, 542–545 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Basso, M.A. & Wurtz, R.H. Modulation of neuronal activity by target uncertainty. Nature 389, 66–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Horwitz, G.D. & Newsome, W.T. Separate signals for target selection and movement specification in the superior colliculus. Science 284, 1158–1161 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Krauzlis, R.J. & Dill, N. Neural correlates of target choice for pursuit and saccades in the primate superior colliculus. Neuron 35, 355–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Port, N.L. & Wurtz, R.H. Sequential activity of simultaneously recorded neurons in the superior colliculus during curved saccades. J. Neurophysiol. 90, 1887–1903 (2003).

    Article  PubMed  Google Scholar 

  27. Schiller, P.H. & Chou, I. The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements: 2. Paired and multiple targets. Vision Res. 39, 4200–4216 (2000).

    Google Scholar 

  28. Iba, M. & Sawaguchi, T. Involvement of the dorsolateral prefrontal cortex of monkeys in visuospatial target selection. J. Neurophysiol. 89, 587–599 (2003).

    Article  PubMed  Google Scholar 

  29. Schiller, P.H. & Tehovnik, E.J. Cortical inhibitory circuits in eye-movement generation. Eur. J. Neurosci. 18, 3127–3133 (2003).

    Article  PubMed  Google Scholar 

  30. Wardak, C., Olivier, E. & Duhamel, J.R. Saccadic target selection deficits after lateral intraparietal area inactivation in monkeys. J. Neurosci. 22, 9877–9884 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sparks, D.L., Lee, C. & Rohrer, W.H. Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harb. Symp. Quant. Biol. 55, 805–811 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Hikosaka, O. & Wurtz, R.H. Saccadic eye movements following injection of lidocaine into the superior colliculus. Exp. Brain Res. 61, 531–539 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Hikosaka, O. & Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol. 53, 266–291 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Aizawa, H. & Wurtz, R.H. Reversible inactivation of monkey superior colliculus. I. Curvature of saccadic trajectory. J. Neurophysiol. 79, 2082–2096 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Quaia, C., Aizawa, H., Optican, L.M. & Wurtz, R.H. Reversible inactivation of monkey superior colliculus. II. Maps of saccadic deficits. J. Neurophysiol. 79, 2097–2110 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Lomber, S.G. The advantages and limitations of permanent or reversible deactivation techniques in the assessment of neural function. J. Neurosci. Methods 86, 109–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Vetter, R.J. Visual localization and discrimination in squirrel monkeys with bilateral lesions of the superior colliculus. Int. J. Neurosci. 6, 215–221 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Solomon, S.J., Pastik, T. & Pastik, P. Extrageniculate vision in the monkey. VIII. Critical structures for spatial localization. Exp. Brain Res. 44, 259–270 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. Mohler, C.W. & Wurtz, R.H. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J. Neurophysiol. 40, 74–94 (1977).

    Article  CAS  PubMed  Google Scholar 

  40. Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

    Google Scholar 

  41. McPeek, R.M., Han, J.H. & Keller, E.L. Competition between saccade goals in the superior colliculus produces saccade curvature. J. Neurophysiol. 89, 2577–2590 (2003).

    Article  PubMed  Google Scholar 

  42. Chen, L.L., Goffart, L. & Sparks, D.L. A simple method for constructing microinjectrodes for reversible inactivation in behaving monkeys. J. Neurosci. Methods 107, 81–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Stanford, T.R., Freedman, E.G. & Sparks, D.L. Site and parameters of microstimulation: evidence for independent effects on the properties of saccades evoked from the primate superior colliculus. J. Neurophysiol. 76, 3360–3381 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Rovamo, J. & Virsu, V. An estimation and application of the human cortical magnification factor. Exp. Brain Res. 37, 495–510 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Eye Institute grants R01-EY014885 to R.M.M. and R01-EY08060 to E.L.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M McPeek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McPeek, R., Keller, E. Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7, 757–763 (2004). https://doi.org/10.1038/nn1269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing