Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients

An Erratum to this article was published on 01 July 2004

Abstract

Axonal chemotaxis is believed to be important in wiring up the developing and regenerating nervous system, but little is known about how axons actually respond to molecular gradients. We report a new quantitative assay that allows the long-term response of axons to gradients of known and controllable shape to be examined in a three-dimensional gel. Using this assay, we show that axons may be nature's most-sensitive gradient detectors, but this sensitivity exists only within a narrow range of ligand concentrations. This assay should also be applicable to other biological processes that are controlled by molecular gradients, such as cell migration and morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gradient generation technique.
Figure 2: Fluorescence imaging of casein concentration gradients.
Figure 3: Guidance of DRG axons by NGF gradients.

Similar content being viewed by others

References

  1. Tessier-Lavigne, M. & Placzek, M. Target attraction - are developing axons guided by chemotropism? Trends Neurosci. 14, 303–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Song, H. & Poo, M.-M. The cell biology of neuronal navigation. Nat. Cell Biol. 3, E81–E88 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Huber, A.B., Kolodkin, A.L., Ginty, D.D. & Cloutier, J.F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Zigmond, S.H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell. Biol. 75, 606–616 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Moghe, P.V., Nelson, R.D. & Tranquillo, R.T. Cytokine-stimulated chemotaxis of human neutrophils in a 3-D conjoined fibrin assay. J. Immunol. Methods 180, 193–211 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Foxman, E.F., Campbell, J.J. & Butcher, E.C. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139, 1349–1360 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knapp, D.M., Helou, E.F. & Tranquillo, R.T. A fibrin or collagen gel assay for tissue cell chemotaxis: assessment of fibroblast chemotaxis to GRGDSP. Exp. Cell Res. 247, 543–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Letourneau, P.C. Chemotactic response of nerve fiber elongation to Nerve Growth Factor. Dev. Biol. 66, 183–196 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, J.Q., Felder, M. & Conner, J.A. & Poo, M.-M. Turning of growth cones induced by neurotransmitters. Nature 368, 140–144 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Rosentreter, S.M. et al. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules. J. Neurobiol. 37, 541–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Bagnard, D., Thomasset, N., Lohrum, M., Puschel, A.W. & Bolz, J. Spatial distributions of guidance molecules regulate chemoattraction and chemorepulsion of growth cones. J. Neurosci. 20, 1030–1035 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao, X. & Shoichet, M.S. Defining the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience 103, 831–840 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Dertinger, S.K., Jiang, X., Li, Z., Murthy, V.N. & Whitesides, G.M. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. USA 99, 12542–12547 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crank, J. The Mathematics of Diffusion, Second edition. (Oxford, Clarendon Press, 1975).

    Google Scholar 

  16. Levi-Montalcini, R. The Nerve Growth Factor: 35 years later. Science 237, 1154–1162 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Gundersen, R.W. & Barrett, J.N. Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science 206, 1079–1080 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Paves, H. & Saarma, M. Neurotrophins as in vitro growth cone guidance molecules for embryonic sensory neurons. Cell Tissue Res. 290, 285–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Caton, A. et al. The branchial arches and HGF are growth-promoting and chemoattractant for cranial motor axons. Development 127, 1751–1766 (2000).

    CAS  PubMed  Google Scholar 

  20. Soeda, H. et al. Functional characterization of calcium channels localized on the growth cones of cultured rat dorsal root ganglion cells. Neurosci. Lett. 325, 5–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Phillips, H.S. & Armanini, M.P. Expression of the trk family of neurotrophin receptors in developing and adult dorsal root ganglion neurons. Phil. Trans. R. Soc. Lond. B 351, 413–416 (1996).

    Article  CAS  Google Scholar 

  22. Conti, A.M., Fischer, S.J. & Windebank, A.J. Inhibition of axonal growth from sensory neurons by excess nerve growth factor. Ann. Neurol. 42, 838–846 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Parent, C.A. & Devreotes, P.N. A cell's sense of direction. Science 284, 765–770 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Firtel, R.A. & Chung, C.Y. The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays 22, 603–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Berg, H.C. & Purcell, E.M. Physics of chemoreception. Biophys. J. 20, 193–219 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goodhill, G.J. & Urbach, J.S. Theoretical analysis of gradient detection by growth cones. J. Neurobiol. 41, 230–241 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Ming, G.L. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Tranquillo, R.T. Theories and models of gradient perception. in Biological Motion (eds. Alt, W. & Hoffmann, G.) 415–441 (Springer-Verlag, Berlin, 1990).

    Chapter  Google Scholar 

  29. Gallo, G., Lefcort, F.B. & Letourneau, P.C. The trkA receptor mediates growth cone turning toward a localized source of nerve growth factor. J. Neurosci. 17, 5445–5454 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Esposito, D. et al. The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J. Biol. Chem. 276, 32687–32695 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Goodhill, G.J. Mathematical guidance for axons. Trends Neurosci. 21, 226–231 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Weaver, C.M., Pinezich, J.D., Lindquist, W.B. & Vazquez, M.E. An algorithm for neurite outgrowth reconstruction. J. Neurosci. Methods 124, 197–205 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Savich, R. Arevalo, S. Mittar, C. Fleury and J. Torri for their assistance with technology development. Supported by the National Institutes of Health, the National Science Foundation, the Department of Defense and the Whitaker Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey J Goodhill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosoff, W., Urbach, J., Esrick, M. et al. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat Neurosci 7, 678–682 (2004). https://doi.org/10.1038/nn1259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing