Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extrastriate body area in human occipital cortex responds to the performance of motor actions

Abstract

A region in human lateral occipital cortex (the 'extrastriate body area' or EBA) has been implicated in the perception of body parts. Here we report functional magnetic resonance imaging (fMRI) evidence that the EBA is strongly modulated by limb (arm, foot) movements to a visual target stimulus, even in the absence of visual feedback from the movement. Therefore, the EBA responds not only during the perception of other people's body parts, but also during goal-directed movements of the observer's body parts. In addition, both limb movements and saccades to a detected stimulus produced stronger signals than stimulus detection without motor movements ('covert detection') in the calcarine sulcus and lingual gyrus. These motor-related modulations cannot be explained by simple visual or attentional factors related to the target stimulus, and suggest a potentially widespread influence of actions on visual cortex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Group-averaged movement-related BOLD responses in the EBA.
Figure 2: Movement-related BOLD responses in the EBA from a single subject (experiment 2).
Figure 3: Group-averaged movement-related BOLD responses in medial occipital cortex.
Figure 4: BOLD responses in the EBA from a single subject during the pointing and imagery conditions.

Similar content being viewed by others

References

  1. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Corbetta, M., Miezin, F.M., Dobmeyer, S., Shulman, G.L. & Petersen, S.E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller, E.K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13, 1460–1478 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Macaluso, E., Frith, C.D. & Driver, J. Crossmodal spatial influences of touch on extrastriate visual areas take current gaze direction into account. Neuron 34, 647–658 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Wurtz, R.H. & Mohler, C.W. Organization of monkey superior colliculus: enhanced visual response of superficial layer cells. J. Neurophysiol. 39, 745–765 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Tolias, A.S. et al. Eye movements modulate visual receptive fields of V4 neurons. Neuron 29, 757–767 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Chelazzi, L. & Corbetta, M. in The New Cognitive Neurosciences (ed. Gazzaniga, M.S.) 667–686 (MIT, Cambridge, Massachusetts, 2000).

    Google Scholar 

  8. Fischer, B., Boch, R. & Bach, M. Stimulus versus eye movements: comparison of neural activity in the striate and prelunate visual cortex (A17 and A19) of trained rhesus monkey. Exp. Brain. Res. 43, 69–77 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Downing, P.E., Jiang, Y., Shuman, M. & Kanwisher, N. A cortical area selective for visual processing of the human body. Science 293, 2470–2473 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Grossman, E.D. & Blake, R. Brain areas active during visual perception of biological motion. Neuron 35, 1167–1175 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Goldberg, M.E. & Bushnell, M.C. Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J. Neurophysiol. 46, 773–787 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. O'Craven, K.M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stiimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Porro, C.A. et al. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J. Neurosci. 16, 7688–7698 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hanakawa, T. et al. Functional properties of brain areas associated with motor execution and imagery. J. Neurophysiol. 89, 989–1002 (2003).

    Article  PubMed  Google Scholar 

  16. Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P. & Shulman, G.L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tootell, R.B., Tsao, D. & Vanduffel, W. Neuroimaging weighs in: humans meet macaques in “Primate” visual cortex. J. Neurosci. 23, 3981–3989 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Spelke, E. Initial knowledge: six suggestions. Cognition 50, 431–445 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Burton, H. et al. Adaptive changes in early and late blind: a fMRI study of Braille reading. J. Neurophysiol. 87, 589–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Amedi, A., Malach, R., Hendler, T., Peled, S. & Zohary, E. Visuo-haptic object-related activation in the ventral visual pathway. Nat. Neurosci. 4, 324–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Evarts, E.V. & Fromm, C. Transcortical reflexes and servo control of movement. Can. J. Physiol. Pharmacol. 59, 757–775 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Sperry, R.W. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43, 482–489 (1950).

    Article  CAS  PubMed  Google Scholar 

  23. Wurtz, R.H. & Sommer, M.A. Identifying corollary discharges for movement in the primate brain. Prog. Brain. Res. 144, 47–60 (2004).

    Article  PubMed  Google Scholar 

  24. Nakamura, K. & Colby, C.L. Visual, saccade-related, and cognitive activation of single neurons in monkey exstrastriate area V3A. J. Neurophysiol. 84, 677–692 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Duhamel, J.R., Colby, C.L. & Goldberg, M.E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Blanke, O., Ortigue, S., Landis, T. & Seeck, M. Stimulating illusory own-body perceptions. Nature 419, 269–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Halligan, P.W., Marshall, J.C. & Wade, D.T. Unilateral somatoparaphrenia after right hemisphere stroke: a case description. Cortex 31, 173–182 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Coslett, H.B. Evidence for a disturbance of the body schema in neglect. Brain Cogn. 37, 527–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Iacoboni, M. et al. Reafferent copies of imitated actions in the right superior temporal cortex. Proc. Natl. Acad. Sci. USA 98, 13995–13999 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jellema, T., Baker, C.I., Wicker, B. & Perrett, D.I. Neural representation for the perception of the intentionality of actions. Brain Cogn. 44, 280–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Perrett, D.I. et al. Frameworks of analysis for the neural representation of animate objects and actions. J. Exp. Biol. 146, 87–113 (1989).

    CAS  PubMed  Google Scholar 

  32. Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain. Res. 3, 131–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Galletti, C. et al. The cortical connections of area V6: an occipito-parietal network processing visual information. Eur. J. Neurosci. 13, 1572–1588 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Astafiev, S.V. et al. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J. Neurosci. 23, 4689–4699 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Falchier, A., Clavagnier, S., Barone, P. & Kennedy, H. Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 22, 5749–5759 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hikosaka, K., Iwai, E., Saito, H. & Tanaka, K. Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J. Neurophysiol. 60, 1615–1637 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Ollinger, J.M., Shulman, G.L. & Corbetta, M. Separating processes within a trial in event-related functional MRI I. The method. Neuroimage 13, 210–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Ollinger, J.M., Corbetta, M. & Shulman, G.L. Separating processes within a trial in event-related functional MRI II. Analysis. Neuroimage 13, 218–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Shulman, G.L. et al. Areas involved in encoding and applying directional expectations to moving objects. J. Neurosci. 19, 9480–9496 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ollinger, J.M. & McAvoy, M.P. A homogeneity correction for post-hoc ANOVAs in fMRI. Neuroimage 11, S604 (2000).

    Article  Google Scholar 

  43. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme Medical, New York, 1988).

    Google Scholar 

  44. Van Essen, D.C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res. 41, 1359–1378 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Rinaman, W.C., Heil, C., Strauss, M.T., Mascagni, M. & Souza, M. in Standard Mathematical Tables and Formulae (ed. Zwillinger, D.) 569–669 (CRC Press, Boca Raton, 1996).

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from National Institutes of Health (EY00379, EY001248, 5P50NS06833). We thank A. Snyder and M. McAvoy for image analysis and statistical advice; and C. Lewis, T. Phan, F. Miezin and M. Cowan for technical support. We also thank P. Downing and N. Kanwisher for providing the photographs of human body parts and object parts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Corbetta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Movement-related BOLD responses in the medial occipital cortex, group-averaged data. The statistical map shows significant differences between right hand Pointing, right Foot pointing, and covert Attention (Experiment 2). Graphs show the group-averaged BOLD timecourses, averaged over target direction (see legend for Fig. 1), from visual and motor regions active in the statistical map. Calc. S/Cu = Calcarine sulcus/Cuneus, LG = lingual gyrus, SMA = supplementary motor area, SII = secondary somatosensory area. Error bars represent s.e.m. (JPG 35 kb)

Supplementary Fig. 2

Pointing vs. Imagery in the EBA (single subjects). Coronal slices on which significant BOLD responses have been superimposed. (a) Pointing with right hand, no visual feedback; (b) Imagining of pointing with right hand; (c) EBA localizer, observation of body parts vs. observation of object parts; (d) EBA voxels with significantly greater activity during pointing than imagery. Graphics show percent signal change response for Pointing (P), Imagery (I), and Saccade (S) tasks vs. fixation baseline in left and right EBA from voxels in (d) (top row), response to body parts (BP) and object parts (OP) vs. fixation baseline from the same voxels in (d) (middle row) and response for Pointing (P) and Imagery (I) tasks vs. fixation baseline in the entire left and right EBA (i.e. from significantly (z = 2.6, P < 0.01 uncorrected) active voxels in EBA localizer) (bottom row). Error bars represent s.e.m. (JPG 75 kb)

Supplementary Fig. 3

Attention-control for movement-related modulation of EBA. (a) Planning activity in EBA for right Hand pointing, Saccade, and Attention tasks. The BOLD response is time-locked to the presentation of a 100 ms foveal arrow cueing one of two peripheral locations followed by a 4.3 second delay. Note similar preparatory response in EBA for pointing and covert attention, and weaker response for planning an eye movement. (b) BOLD response time-locked to the presentation of targets at attended (valid) and unattended (invalid) locations during right hand Pointing (R. hand), right foot pointing (R. foot), and Attention tasks. There is a stronger response during invalid than valid trials, which is effector-independent. Moreover, the response for Pointing and Attention is not significantly different. Error bars represent s.e.m. (GIF 10 kb)

Supplementary Methods (PDF 12 kb)

Supplementary Tables 1-4 (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astafiev, S., Stanley, C., Shulman, G. et al. Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nat Neurosci 7, 542–548 (2004). https://doi.org/10.1038/nn1241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing