Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites

Abstract

Theoretical and experimental studies on the computation of neural networks suggest that neural computation results from a dynamic interplay of excitatory and inhibitory (E/I) synaptic inputs. Precisely how E/I synapses are organized structurally and functionally to facilitate meaningful interaction remains elusive. Here we show that E/I synapses are regulated across dendritic trees to maintain a constant ratio of inputs in cultured rat hippocampal neurons. This structural arrangement is accompanied by an E/I functional balance maintained by a 'push-pull' feedback regulatory mechanism that is capable of adjusting E/I efficacies in a coordinated fashion. We also found that during activity, inhibitory synapses can determine the impact of adjacent excitatory synapses only if they are colocalized on the same dendritic branch and are activated simultaneously. These fundamental relationships among E/I synapses provide organizational principles relevant to deciphering the structural and functional basis for neural computation within dendritic branches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structural balance of E/I synapses is maintained throughout hippocampal dendrites.
Figure 2: Functional balance of E/I synaptic inputs in a single neuron.
Figure 3: Activation of dendritic inhibitory synapses during bursts.
Figure 4: Spatial and temporal interactions between E/I inputs.
Figure 5: Feedback regulation of E/I synapses after perturbation of E/I balance.

Similar content being viewed by others

References

  1. Koch, C., Poggio, T. & Torre, V. Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc. Natl. Acad. Sci. USA 80, 2799–2802 (1983).

    Article  CAS  Google Scholar 

  2. Bush, P.C. & Sejnowski, T.J. Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. J. Neurophysiol. 71, 2183–2193 (1994).

    Article  CAS  Google Scholar 

  3. Ferster, D. & Miller, K.D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).

    Article  CAS  Google Scholar 

  4. Fried, S.I., Munch, T.A. & Werblin, F.S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002).

    Article  CAS  Google Scholar 

  5. Gabbiani, F., Krapp, H.G., Koch, C. & Laurent, G. Multiplicative computation in a visual neuron sensitive to looming. Nature 420, 320–324 (2002).

    Article  CAS  Google Scholar 

  6. Taylor, W.R., He, S., Levick, W.R. & Vaney, D.I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 289, 2347–2350 (2000).

    Article  CAS  Google Scholar 

  7. Schummers, J., Marino, J. & Sur, M. Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36, 969–978 (2002).

    Article  CAS  Google Scholar 

  8. Shu, Y., Hasenstaub, A. & McCormick, D.A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).

    Article  CAS  Google Scholar 

  9. Chance, F.S., Abbott, L.F. & Reyes, A.D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    Article  CAS  Google Scholar 

  10. Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynader, M. & Cowey, A. Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb. Cortex 2, 295–309 (1992).

    Article  CAS  Google Scholar 

  11. Beaulieu, C. & Somogyi, P. Targets and quantitative distribution of GABAergic synapses in the visual cortex of the cat. Eur. J. Neurosci. 2, 296–303 (1990).

    Article  Google Scholar 

  12. Megias, M., Emri, Z., Freund, T.F. & Gulyas, A.I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    Article  CAS  Google Scholar 

  13. Miles, R., Toth, K., Gulyas, A.I., Hajos, N. & Freund, T.F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823 (1996).

    Article  CAS  Google Scholar 

  14. McBain, C.J. & Fisahn, A. Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001).

    Article  CAS  Google Scholar 

  15. Hausser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  CAS  Google Scholar 

  16. Poirazi, P. & Mel, B.W. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–796 (2001).

    Article  CAS  Google Scholar 

  17. Larkman, A.U. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J. Comp. Neurol. 306, 332–343 (1991).

    Article  CAS  Google Scholar 

  18. Ben-Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J.L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. 416, 303–325 (1989).

    Article  CAS  Google Scholar 

  19. Leinekugel, X. et al. Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296, 2049–2052 (2002).

    Article  CAS  Google Scholar 

  20. Murnick, J.G., Dube, G., Krupa, B. & Liu, G. High-resolution iontophoresis for single-synapse stimulation. J. Neurosci. Methods 116, 65–75 (2002).

    Article  CAS  Google Scholar 

  21. Liu, G., Choi, S. & Tsien, R.W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22, 395–409 (1999).

    Article  CAS  Google Scholar 

  22. Davis, G.W. & Goodman, C.S. Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr. Opin. Neurobiol. 8, 149–156 (1998).

    Article  CAS  Google Scholar 

  23. Turrigiano, G.G. & Nelson, S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  Google Scholar 

  24. Liu, G. & Tsien, R.W. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375, 404–408 (1995).

    Article  CAS  Google Scholar 

  25. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  26. Murthy, V.N., Schikorski, T., Stevens, C.F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  Google Scholar 

  27. Paradis, S., Sweeney, S.T. & Davis, G.W. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30, 737–749 (2001).

    Article  CAS  Google Scholar 

  28. Burrone, J., O'Byrne, M. & Murthy, V.N. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420, 414–418 (2002).

    Article  CAS  Google Scholar 

  29. Kilman, V., van Rossum, M.C. & Turrigiano, G.G. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J. Neurosci. 22, 1328–1337 (2002).

    Article  CAS  Google Scholar 

  30. Knott, G.W., Quairiaux, C., Genoud, C. & Welker, E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265–273 (2002).

    Article  CAS  Google Scholar 

  31. Desai, N.S., Cudmore, R.H., Nelson, S.B. & Turrigiano, G.G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 5, 783–789 (2002).

    Article  CAS  Google Scholar 

  32. Morales, B., Choi, S.Y. & Kirkwood, A. Dark rearing alters the development of GABAergic transmission in visual cortex. J. Neurosci. 22, 8084–8090 (2002).

    Article  CAS  Google Scholar 

  33. Cossart, R. et al. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat. Neurosci. 4, 52–62 (2001).

    Article  CAS  Google Scholar 

  34. Rumsey, C.C. & Abbott, L.F. Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. J. Neurophysiol. (2003).

  35. Johnston, D. et al. Active dendrites, potassium channels and synaptic plasticity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 667–674 (2003).

    Article  CAS  Google Scholar 

  36. Wilson, M.A. & McNaughton, B.L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  37. Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498 (2002).

    Article  CAS  Google Scholar 

  38. Anderson, J.S., Carandini, M. & Ferster, D. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol. 84, 909–926 (2000).

    Article  CAS  Google Scholar 

  39. Zhang, L.I., Tan, A.Y., Schreiner, C.E. & Merzenich, M.M. Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature 424, 201–205 (2003).

    Article  CAS  Google Scholar 

  40. Hensch, T.K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank E. Hueske and B. Li for participating in part of the experiments and contributing to Figure 1; M. Wilson, X.J. Wang, N. Wilson, S. Sadeghpour, B. Krupa and T. Emery for comments on the manuscript. This work was supported by grants from National Institutes of Health and the RIKEN–MIT Neuroscience Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosong Liu.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Fig. 1

Evaluation of the quality of space clamp in a cultured hippocampal neuron. a, Distribution of mEPSC rise time with a median value of 0.29 ms. The fast rise kinetics of mEPSCs suggest that active synapses are under reasonable degree of voltage clamp. b, Locations on the dendritic tree (S1, S2, S3) where glutamate receptors were activated by iontophrenic application of glutamate. Functional synapses are labeled by FM-dye labeling (red spots). S3 is approximately 130 μm away from the soma. c, Reversal potentials of synaptic currents in mV are S1 (0.6), S2 (3.5), and S3 (4.7). These results indicate that synapses whose locations are within 130 μm of the soma would receive an adequate steady-state level of voltage control. d, Comparison of time courses of glutamate evoked currents from various locations of dendritic tree. The shape of synaptic currents did not change significantly with increased distance between active synaptic sites and the site of somatic voltage clamp. This data suggests that most synapses receive a bandwidth of voltage clamp sufficient for recording changing time courses of synaptic conductance during synaptic transmission without introducing significant distortion. Therefore, the quality of the space clamp in this experimental condition is sufficient for detecting synaptic conductance originated from the active synapses at distant location of dendritic tree. (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat Neurosci 7, 373–379 (2004). https://doi.org/10.1038/nn1206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing