Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation

Abstract

A dramatic form of experience-dependent synaptic plasticity is revealed in visual cortex when one eye is temporarily deprived of vision during early postnatal life. Monocular deprivation (MD) alters synaptic transmission such that cortical neurons cease to respond to stimulation of the deprived eye, but how this occurs is poorly understood. Here we show in rat visual cortex that brief MD sets in motion the same molecular and functional changes as the experimental model of homosynaptic long-term depression (LTD), and that prior synaptic depression by MD occludes subsequent induction of LTD. The mechanisms of LTD, about which there is now a detailed understanding, therefore contribute to visual cortical plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LTD in vivo is accompanied by a dephosphorylation of GluR1 at Ser845 and a decrease in visually evoked potentials.
Figure 2: Brief MD leads to depression of synaptic transmission in A17 contralateral to the deprived eye (DE).
Figure 3: Brief MD alters AMPAR phosphorylation in visual cortex.
Figure 4: Brief MD produces synaptic depression and dephosphorylation of GluR1 at Ser845 in monocular and binocular segments of A17 contralateral to the deprived eye.
Figure 5: Brief MD is accompanied by a loss of surface-expressed AMPARs in juvenile animals.
Figure 6: Prior monocular deprivation occludes LFS-induced decreases in synaptic strength.
Figure 7: Time course of changes in AMPAR phosphorylation following monocular deprivation.

Similar content being viewed by others

References

  1. Wiesel, T.N. Postnatal development of the visual cortex and the influence of the environment. Nature 299, 583–592 (1982).

    Article  CAS  Google Scholar 

  2. Mioche, L. & Singer, W. Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties. J. Neurophysiol. 62, 185–197 (1989).

    Article  CAS  Google Scholar 

  3. Rittenhouse, C.D., Shouval, H.Z., Paradiso, M.A. & Bear, M.F. Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature 397, 347–350 (1999).

    Article  CAS  Google Scholar 

  4. Bear, M.F., Cooper, L.N. & Ebner, F.F. A physiological basis for a theory of synaptic modification. Science 237, 42–48 (1987).

    Article  CAS  Google Scholar 

  5. Dudek, S.M. & Bear, M.F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89, 4363–4367 (1992).

    Article  CAS  Google Scholar 

  6. Mulkey, R.M., Endo, S., Shenolikar, S. & Malenka, R.C. Calcineurin and inhibitor-1 are components of a protein-phosphatase cascade mediating hippocampal LTD. Nature 369, 486–488 (1994).

    Article  CAS  Google Scholar 

  7. Kirkwood, A. & Bear, M.F. Homosynaptic long-term depression in the visual cortex. J. Neurosci. 14, 3404–3412 (1994).

    Article  CAS  Google Scholar 

  8. Kandler, K., Katz, L.C. & Kauer, J.A. Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nat Neurosci 1, 119–123 (1998).

    Article  CAS  Google Scholar 

  9. Dodt, H., Eder, M., Frick, A. & Zieglgansberger, W. Precisely localized LTD in the neocortex revealed by infrared-guided laser stimulation. Science 286, 110–113 (1999).

    Article  CAS  Google Scholar 

  10. Edelman, G.M. & Gally, J.A. Degeneracy and complexity in biological systems. Proc. Natl. Acad. Sci. USA 98, 13763–13768 (2001).

    Article  CAS  Google Scholar 

  11. Barria, A., Muller, D., Derkach, V., Griffith, L.C. & Soderling, T.R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    Article  CAS  Google Scholar 

  12. Lee, H.K., Kameyama, K., Huganir, R.L. & Bear, M.F. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21, 1151–1162 (1998).

    Article  CAS  Google Scholar 

  13. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  Google Scholar 

  14. Kim, C.H., Chung, H.J., Lee, H.K. & Huganir, R.L. Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc. Natl. Acad. Sci. USA 98, 11725–11730 (2001).

    Article  CAS  Google Scholar 

  15. Banke, T.G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000).

    Article  CAS  Google Scholar 

  16. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  17. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity- dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  Google Scholar 

  18. Chung, H.J., Xia, J., Scannevin, R.H., Zhang, X. & Huganir, R.L. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20, 7258–7267 (2000).

    Article  CAS  Google Scholar 

  19. Heynen, A.J., Abraham, W.C. & Bear, M.F. Bidirectional modification of CA1 synapses in the adult hippocampus in vivo. Nature 381, 163–166 (1996).

    Article  CAS  Google Scholar 

  20. Kameyama, K., Lee, H.K., Bear, M.F. & Huganir, R.L. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21, 1163–1175 (1998).

    Article  CAS  Google Scholar 

  21. Malenka, R.C. & Nicoll, R.A. Long-term potentiation—a decade of progress? Science 285, 1870–1874 (1999).

    Article  CAS  Google Scholar 

  22. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. & Maffei, L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res. 34, 709–720 (1994).

    Article  CAS  Google Scholar 

  23. Heynen, A.J. & Bear, M.F. Long-term potentiation of thalamocortical transmission in adult visual cortex in vivo. J. Neurosci. 21, 9801–9813 (2001).

    Article  CAS  Google Scholar 

  24. Kenan-Vaknin, G. & Teyler, T.J. Laminar pattern of synaptic activity in rat primary visual cortex: Comparison of in vivo and in vitro studies employing the current source density analysis. Brain Res. 635, 37–48 (1994).

    Article  CAS  Google Scholar 

  25. Yinon, U. & Auerbach, E. Deprivation of pattern vision studied by visual evoked potentials in the rat cortex. Exp. Neurol. 38, 231–251 (1973).

    Article  CAS  Google Scholar 

  26. Sawtell, N.B. et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38, 977–985 (2003).

    Article  CAS  Google Scholar 

  27. Bear, M.F., Kleinschmidt, A., Gu, Q. & Singer, W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci. 10, 909–925 (1990).

    Article  CAS  Google Scholar 

  28. Heynen, A.J., Quinlan, E.M., Bae, D.C. & Bear, M.F. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28, 527–536 (2000).

    Article  CAS  Google Scholar 

  29. Kossut, M. & Singer, W. The effect of short periods of monocular deprivation on excitatory transmission in the striate cortex of kittens: a current source density analysis. Exp. Brain Res. 85, 519–527 (1991).

    Article  CAS  Google Scholar 

  30. Trachtenberg, J.T., Trepel, C. & Stryker, M.P. Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287, 2029–2032 (2000).

    Article  CAS  Google Scholar 

  31. Antonini, A., Fagiolini, M. & Stryker, M.P. Anatomical correlates of functional plasticity in mouse visual cortex. J. Neurosci. 19, 4388–4406 (1999).

    Article  CAS  Google Scholar 

  32. Bear, M.F. & Rittenhouse, C.D. Molecular basis for induction of ocular dominance plasticity. J. Neurobiol. 41, 83–91 (1999).

    Article  CAS  Google Scholar 

  33. Colman, H., Nabekura, J. & Lichtman, J.W. Alterations in synaptic strength preceding axon withdrawal. Science 275, 356–361 (1997).

    Article  CAS  Google Scholar 

  34. Guillery, R. Binocular competition in the control of geniculate cell growth. J. Comp. Neurol. 144, 117–130 (1972).

    Article  CAS  Google Scholar 

  35. Bienenstock, E.L., Cooper, L.N. & Munro, P.W. Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  36. Blais, B.S., Shouval, H.Z. & Cooper, L.N. The role of presynaptic activity in monocular deprivation: comparison of homosynaptic and heterosynaptic mechanisms. Proc. Natl. Acad. Sci. USA 96, 1083–1087 (1999).

    Article  CAS  Google Scholar 

  37. Mitchell, D.E., Gingras, G. & Kind, P.C. Initial recovery of vision after early monocular deprivation in kittens is faster when both eyes are open. Proc. Natl. Acad. Sci. USA 98, 11662–11667 (2001).

    Article  CAS  Google Scholar 

  38. Kirkwood, A., Rioult, M.G. & Bear, M.F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381, 526–528 (1996).

    Article  CAS  Google Scholar 

  39. Philpot, B.D., Sekhar, A.K., Shouval, H.Z. & Bear, M.F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).

    Article  CAS  Google Scholar 

  40. Philpot, B.D., Espinosa, J.S. & Bear, M.F. Evidence for altered NMDA receptor function as a basis for metaplasticity in visual cortex. J. Neurosci. 23, 5583–5588 (2003).

    Article  CAS  Google Scholar 

  41. Freeman, R.D., Mallach, R. & Hartley, S. Responsivity of normal kitten striate cortex deteriorates after brief binocular deprivation. J. Neurophysiol. 45, 1074–1084 (1981).

    Article  CAS  Google Scholar 

  42. Prusky, G.T. & Douglas, R.M. Developmental plasticity of mouse visual acuity. Eur. J. Neurosci. 17, 167–73 (2003).

    Article  Google Scholar 

  43. Dudek, S.M. & Friedlander, M.J. Developmental down-regulation of LTD in cortical layer IV and its independence of modulation by inhibition. Neuron 16, 1–20 (1996).

    Article  Google Scholar 

  44. Rozas, C. et al. Developmental inhibitory gate controls the relay of activity to the superficial layers of the visual cortex. J. Neurosci. 21, 6791–6801 (2001).

    Article  CAS  Google Scholar 

  45. Huang, Z.J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    Article  CAS  Google Scholar 

  46. Ramoa, A.S., Paradiso, M.A. & Freeman, R.D. Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity. Exp. Brain Res. 73, 285–296 (1988).

    Article  CAS  Google Scholar 

  47. Hensch, T.K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    Article  CAS  Google Scholar 

  48. Kirkwood, A., Rozas, C., Kirkwood, J., Perez, F. & Bear, M.F. Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J. Neurosci. 19, 1599–1609 (1999).

    Article  CAS  Google Scholar 

  49. Allen, C.B., Celikel, T. & Feldman, D.E. Long-term depression induced by sensory deprivation during cortical map plasticity. Nat. Neurosci. 6, 291–299 (2003).

    Article  CAS  Google Scholar 

  50. Mammen, A.L., Kameyama, K., Roche, K.W. & Huganir, R.L. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4- propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem. 272, 32528–32533 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Orsini from the laboratory of L. Maffei (Pisa, Italy) for providing VEP software, and E. Sklar, K. Clayton, K. Miller and S. Meagher for assistance. The work was funded by the Howard Hughes Medical Institute and the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F Bear.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heynen, A., Yoon, BJ., Liu, CH. et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci 6, 854–862 (2003). https://doi.org/10.1038/nn1100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing