Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alzheimer's disease: the cholesterol connection

Abstract

A hallmark of all forms of Alzheimer's disease (AD) is an abnormal accumulation of the β-amyloid protein (Aβ) in specific brain regions. Both the generation and clearance of Aβ are regulated by cholesterol. Elevated cholesterol levels increase Aβ in cellular and most animals models of AD, and drugs that inhibit cholesterol synthesis lower Aβ in these models. Recent studies show that not only the total amount, but also the distribution of cholesterol within neurons, impacts Aβ biogenesis. The identification of a variant of the apolipoprotein E (APOE) gene as a major genetic risk factor for AD is also consistent with a role for cholesterol in the pathogenesis of AD. Clinical trials have recently been initiated to test whether lowering plasma and/or neuronal cholesterol levels is a viable strategy for treating and preventing AD. In this review, we describe recent findings concerning the molecular mechanisms underlying the cholesterol–AD connection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteolytic processing of APP.

Ivelisse Robles

Figure 2: Two possible models for apoE's role in Aβ accumulation.

Ivelisse Robles

Figure 3: Schematic view of cholesterol homeostasis in neurons and cholesterol-related targets for therapeutic treatment of AD.

Ivelisse Robles

Similar content being viewed by others

References

  1. Tanzi, R.E. & Bertram, L. New frontiers in Alzheimer's disease genetics. Neuron 32, 181–184 (2001).

    Article  CAS  Google Scholar 

  2. Thinakaran, G. The role of presenilins in Alzheimer's disease. J. Clin. Invest. 104, 1321–1327 (1999).

    Article  CAS  Google Scholar 

  3. Blacker, D. et al. Results of a high-resolution genome screen of 437 Alzheimer's Disease families. Hum. Mol. Genet. 12, 23–32 (2003).

    Article  CAS  Google Scholar 

  4. Selkoe, D.J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, 23–31 (1999).

    Article  Google Scholar 

  5. Price, D.L., Tanzi, R.E., Borchelt, D.R., & Sisodia, S.S. Alzheimer's disease: genetic studies and transgenic models. Annu. Rev. Genet. 32, 461–493 (1998).

    Article  CAS  Google Scholar 

  6. Cao, X. & Sudhof, T.C. A transcriptionally active complex of APP with FE65 and histone acethyltransferase Tip60. Science 293, 115–120 (2001).

    Article  CAS  Google Scholar 

  7. Kimberly, W.T., Zheng, J.B., Guenette, S.Y. & Selkoe, D.J. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a Notch-like manner. J. Biol. Chem. 276, 40288–40292 (2001).

    Article  CAS  Google Scholar 

  8. Bales, K.R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17, 263–264 (1997).

    Article  CAS  Google Scholar 

  9. Bales, K.R. et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 96, 15233–15238 (1999).

    Article  CAS  Google Scholar 

  10. Holtzman, D.M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 97, 2892–2897 (2000).

    Article  CAS  Google Scholar 

  11. LaDu, M.J. et al. Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23403–23406 (1994).

    CAS  PubMed  Google Scholar 

  12. Naslund, J. et al. Characterization of stable complexes involving apolipoprotein E and the amyloid β peptide in Alzheimer's disease brain. Neuron 15, 219–228 (1995).

    Article  CAS  Google Scholar 

  13. Yang, D.S. et al. Apolipoprotein E promotes the binding and uptake of beta-amyloid into Chinese hamster ovary cells in an isoform-specific manner. Neuroscience 90, 1217–1226 (1999).

    Article  CAS  Google Scholar 

  14. Van Uden, E. et al. A protective role of the low density lipoprotein receptor–related protein against amyloid beta-protein toxicity. J. Biol. Chem. 275, 30525–30530 (2000).

    Article  CAS  Google Scholar 

  15. Chung, H., Brazil, M.I., Soe, T.T. & Maxfield, F.R. Uptake, degradation and release of fibrillar and soluble forms of Alzheimer's amyloid beta-peptide by microglial cells. J. Biol. Chem. 274, 32301–32308 (1999).

    Article  CAS  Google Scholar 

  16. Ulery, P.G. et al. Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). J. Biol. Chem. 275, 7410–7415 (2000).

    Article  CAS  Google Scholar 

  17. Herz, J. & Beffert, U. Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nat. Rev. Neurosci. 1, 51–58 (2000).

    Article  CAS  Google Scholar 

  18. Strittmatter, W.J. et al. Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform-specific effects and implications for late-onset alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 8098–8102 (1993).

    Article  CAS  Google Scholar 

  19. Ma, J., Yee, A., Brewer, H.B. Jr., Das, S. & Potter, H. Amyloid-associated proteins alpha1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 372, 92–94 (1994).

    Article  CAS  Google Scholar 

  20. Sanan, D.A. et al. Apolipoprotein E associates with β amyloid peptide of Alzheimer's disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J. Clin. Invest. 94, 860–869 (1994).

    Article  CAS  Google Scholar 

  21. Holtzman, D.M. Role of apoE/Abeta interactions in the pathogenesis of Alzheimer's disease and cerebral amyloid angiopathy. J. Mol. Neurosci. 17, 147–155 (2001).

    Article  CAS  Google Scholar 

  22. Fagan, A.M. et al. Human and murine ApoE markedly alters Aβ metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol. Dis. 9, 305–318 (2002).

    Article  CAS  Google Scholar 

  23. Ehnholm, C., Lukka, M., Kuusi, T., Nikkila, E. & Utermann, G. Apolipoprotein E polymorphism in the Finnish population: gene frequencies and relation to lipoprotein concentrations. J. Lipid Res. 27, 227–235 (1986).

    CAS  PubMed  Google Scholar 

  24. Boerwinkle, E. et al. The use of measured genotype information in the analysis of quantitative phenotypes in man. II. The role of the apolipoprotein E polymorphism in determining levels, variability, and covariability of cholesterol, betalipoprotein, and triglycerides in a sample of unrelated individuals. Am. J. Med. Genet. 27, 567–582 (1987).

    Article  CAS  Google Scholar 

  25. Papassotiropoulos, A. et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J. Psychiatr. Res. 36, 27–32 (2002).

    Article  CAS  Google Scholar 

  26. Jarvik, G.P. et al. Interaction of apolipoprotein E genotype, total cholesterol level, and sex in prediction of Alzheimer disease in a case-control study. Neurology 45, 1092–1096 (1995).

    Article  CAS  Google Scholar 

  27. Kuo, Y.M. et al. Elevated low-density lipoprotein in Alzheimer's disease correlates with brain Aβ 1-42 levels. Biochem. Biophys. Res. Commun. 252, 711–715 (1998).

    Article  CAS  Google Scholar 

  28. Fernandes, M.A. et al. Effects of apolipoprotein E genotype on blood lipid composition and membrane platelet fluidity in Alzheimer's disease. Biochim. Biophys. Acta. 1454, 89–96 (1999).

    Article  CAS  Google Scholar 

  29. Knebl, J. et al. Plasma lipids and cholesterol esterification in Alzheimer's disease. Mech. Ageing Dev. 73, 69–77 (1994).

    Article  CAS  Google Scholar 

  30. Hofman, A. et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam study. Lancet 349, 151–154 (1997).

    Article  CAS  Google Scholar 

  31. Mori, T. et al. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J. Neuropathol. Exp. Neurol. 60, 778–785 (2001).

    Article  CAS  Google Scholar 

  32. Jick, H., Zornberg, G.L., Jick, S.S., Seshadri, S. & Drachman, D.A. Statins and the risk of dementia. Lancet 356, 1627–1631 (2000).

    Article  CAS  Google Scholar 

  33. Wolozin, B. & Behl, C. Mechanisms of neurodegenerative disorders: protein aggregates. Arch. Neurol. 57, 793–796 (2000).

    Article  CAS  Google Scholar 

  34. Yaffe, K., Barrett-Connor, E., Lin, F. & Grady, D. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch. Neurol. 59, 378–384 (2002).

    Article  Google Scholar 

  35. Rockwood, K. et al. Use of lipid-lowering agents, indication bias and the risk of dementia in community-dwelling elderly people. Arch. Neurol. 59, 223–227 (2002).

    Article  Google Scholar 

  36. Simons, M. et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann. Neurol. 52, 346–350 (2002).

    Article  CAS  Google Scholar 

  37. Shepherd, J. et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360, 1623–1630 (2002).

    Article  CAS  Google Scholar 

  38. Petanceska, S., Papolla, M. & Refolo, L. Modulation of Alzheimer's amyloidosis by statins: mechanism of action. Curr. Med. Chem. Imun. Endocrinol. Metab. Agents 3, 233–243 (2003).

    Google Scholar 

  39. Corsini, A. Fluvastatin: effects beyond cholesterol lowering. J. Cardiovasc. Pharmacol. Ther. 5, 161–175 (2000).

    Article  CAS  Google Scholar 

  40. Sparks, D.L. et al. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol. 126, 88–94 (1994).

    Article  CAS  Google Scholar 

  41. Sparks, D.L., Kuo, Y.M., Roher, A., Martin, T. & Lukas, R.J. Alterations of Alzheimer's disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations. Ann. NY Acad. Sci. 903, 335–344 (2000).

    Article  CAS  Google Scholar 

  42. Refolo, L.M. et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331 (2000).

    Article  CAS  Google Scholar 

  43. Refolo, L.M. et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 8, 890–899 (2001).

    Article  CAS  Google Scholar 

  44. Howland, D.S. et al. Modulation of secreted β-amyloid precursor protein and amyloid β-peptide in brain by cholesterol. J. Biol. Chem. 273, 16576–16582 (1998).

    Article  CAS  Google Scholar 

  45. Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease beta- amyloid peptides Aβ 42 and Aβ 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98, 5856–5861 (2001).

    Article  CAS  Google Scholar 

  46. Refolo, L.M., Wittenberg, I.S., Friedrich V.L. Jr. & Robakis, N.K. The Alzheimer amyloid precursor is associated with the detergent-insoluble cytoskeleton. J. Neurosci. 11, 3888–3897 (1991).

    Article  CAS  Google Scholar 

  47. Lee, S.J. et al. A detergent-insoluble membrane compartment contains Aβ in vivo. Nat. Med. 4, 730–734 (1998).

    Article  CAS  Google Scholar 

  48. Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123 (2003).

    Article  CAS  Google Scholar 

  49. Choo-Smith, L.P. & Surewicz, W.K. The interaction between Alzheimer amyloid beta(1-40) peptide and ganglioside GM1-containing membranes. FEBS Lett. 402, 95–98 (1997).

    Article  CAS  Google Scholar 

  50. Yanagisawa, K., McLaurin, J., Michikawa, M., Chakrabartty, A. & Ihara, Y. Amyloid beta-protein (Aβ) associated with lipid molecules: immunoreactivity distinct from that of soluble Aβ. FEBS Lett. 420, 43–46 (1997).

    Article  CAS  Google Scholar 

  51. Yanagisawa, K., Odaka, A., Suzuki, N. & Ihara, Y. GM1 ganglioside-bound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer's disease. Nat. Med. 1, 1062–1066 (1995).

    Article  CAS  Google Scholar 

  52. Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95, 6460–6464 (1998).

    Article  CAS  Google Scholar 

  53. Frears, E.R., Stephens, D.J., Walters, C.E., Davies, H. & Austen, B.M. The role of cholesterol in the biosynthesis of β-amyloid. Neuroreport 10, 1699–1705 (1999).

    Article  CAS  Google Scholar 

  54. Bodovitz, S. & Klein, W.L. Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 271, 4436–4440 (1996).

    Article  CAS  Google Scholar 

  55. Racchi, M. et al. Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem. J. 322, 893–898 (1997).

    Article  CAS  Google Scholar 

  56. Kojro, E., Gimpl, G., Lammich, S., Marz, W. & Fahrenholz, F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc. Natl. Acad. Sci. USA 98, 5815–5820 (2001).

    Article  CAS  Google Scholar 

  57. Runz, H. et al. Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J. Neurosci. 22, 1679–1689 (2002).

    Article  CAS  Google Scholar 

  58. Fukumoto, H., Deng, A., Irizarry, M.C., Fitzgerald, M.L. & Rebeck, G.W. Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor aginists increases secreted Aβ levels. J. Biol. Chem. 277, 48508–48513 (2002).

    Article  CAS  Google Scholar 

  59. Puglielli, L. et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat. Cell Biol. 3, 905–912 (2001).

    Article  CAS  Google Scholar 

  60. Chang, T.Y. et al. Roles of acyl-coenzyme A: cholesterol acyltransferase-1 and -2. Curr. Opin. Lipidol. 12, 289–296 (2001).

    Article  CAS  Google Scholar 

  61. Chang, T.Y., Chang, C.C., Lu, X. & Lin, S. Catalysis of ACAT may be completed within the plane of the membrane. A working hypothesis. J. Lipid Res. 42, 1933–1938 (2001).

    CAS  PubMed  Google Scholar 

  62. Brown, M.S. & Goldstein, J.L. A proteolytic pathway that controls the cholesterol content of membranes, cells and blood. Proc. Natl. Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  Google Scholar 

  63. Tschape, J.A. et al. The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J. 21, 6367–6376 (2002).

    Article  Google Scholar 

  64. Dietschy, J.M. & Turley, S.D. Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12, 105–112 (2001).

    Article  CAS  Google Scholar 

  65. Snipes, G.J. & Suter, U. Cholesterol and myelin. in Subcellular Biochemistry. Cholesterol: its Functions and Metabolism in Biology and Medicine (ed. Bittman, R.) 173–204 (Plenum Press, New York, 1997).

    Chapter  Google Scholar 

  66. Accad, M. et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA: cholesterol acyltransferase 1. J. Clin. Invest. 105, 711–719 (2000).

    Article  CAS  Google Scholar 

  67. Haley, R.W. & Dietschy, J.M. Is there a connection between the concentration of cholesterol circulating in plasma and the rate of neuritic plaque formation in Alzheimer disease? Arch. Neurol. 57, 1410–1412 (2000).

    Article  CAS  Google Scholar 

  68. Salen, G. & Grundy, S.M. The metabolism of cholestanol, cholesterol and bile acids in cerebrotendinous xanthomatosis. J. Clin. Invest. 52, 2822–2835 (1973).

    Article  CAS  Google Scholar 

  69. Salen, G. et al. Increased concentrations of cholestanol and apolipoprotein B in the cerebrospinal fluid of patients with cerebrotendinous xanthomatosis. Effect of chenodeoxycholic acid. N. Engl. J. Med. 316, 1233–1238 (1987).

    Article  CAS  Google Scholar 

  70. Bjorkem, I. & Boberg, K.M. Inborn errors in bile acid biosynthesis and storage of sterols other than cholesterol. in The Metabolic and Molecular Bases of Inherited Disease (eds. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2073–2099 (McGraw-Hill, New York, 1995).

    Google Scholar 

Download references

Acknowledgements

The work described in this review was supported by grants from the Alzheimer's Association (L.P.), the National Institute on Aging (R.E.T.), the National Institute of Neurological Disorders and Stroke (D.M.K.) and the American Health Assistance Foundation (AHAF; to D.M.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora M. Kovacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puglielli, L., Tanzi, R. & Kovacs, D. Alzheimer's disease: the cholesterol connection. Nat Neurosci 6, 345–351 (2003). https://doi.org/10.1038/nn0403-345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0403-345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing