Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Our sense of direction: progress, controversies and challenges

Abstract

In this Perspective, we evaluate current progress in understanding how the brain encodes our sense of direction, within the context of parallel work focused on how early vestibular pathways encode self-motion. In particular, we discuss how these systems work together and provide evidence that they involve common mechanisms. We first consider the classic view of the head direction cell and results of recent experiments in rodents and primates indicating that inputs to these neurons encode multimodal information during self-motion, such as proprioceptive and motor efference copy signals, including gaze-related information. We also consider the paradox that, while the head-direction network is generally assumed to generate a fixed representation of perceived directional heading, this computation would need to be dynamically updated when the relationship between voluntary motor command and its sensory consequences changes. Such situations include navigation in virtual reality and head-restricted conditions, since the natural relationship between visual and extravisual cues is altered.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview highlighting functions and projections of the two ascending vestibular pathways: (i) the anterior vestibulothalamic pathway through the nucleus prepositus and supragenual nucleus (NPH/SGN) to the HD network (blue; see Fig. 2 for details) and (ii) the posterior vestibulothalamic pathway through the ventral posterior lateral nucleus (red).
Figure 2: Representative plots for HD cells and HD circuit.
Figure 3: Learning new relationships between motor commands and sensory feedback during self-motion.

Similar content being viewed by others

References

  1. Gibson, J.J. The perception of visual surfaces. Am. J. Psychol. 63, 367–384 (1950).

    Article  CAS  PubMed  Google Scholar 

  2. Loomis, J.M., Blascovich, J.J. & Beall, A.C. Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 31, 557–564 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I. & Moser, M.B. Path integration and the neural basis of the 'cognitive map'. Nat. Rev. Neurosci. 7, 663–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Berthoz, A., Israël, I., Georges-François, P., Grasso, R. & Tsuzuku, T. Spatial memory of body linear displacement: what is being stored? Science 269, 95–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Glasauer, S., Amorim, M.A., Vitte, E. & Berthoz, A. Goal-directed linear locomotion in normal and labyrinthine-defective subjects. Exp. Brain Res. 98, 323–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Grasso, R., Ivanenko, Y. & Lacquaniti, F. Time course of gaze influences on postural responses to neck proprioceptive and galvanic vestibular stimulation in humans. Neurosci. Lett. 273, 121–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Israël, I., Grasso, R., Georges-Francois, P., Tsuzuku, T. & Berthoz, A. Spatial memory and path integration studied by self-driven passive linear displacement. I. Basic properties. J. Neurophysiol. 77, 3180–3192 (1997).

    Article  PubMed  Google Scholar 

  8. Ivanenko, Y.P. & Grasso, R. Integration of somatosensory and vestibular inputs in perceiving the direction of passive whole-body motion. Brain Res. 5, 323–327 (1997).

    CAS  Google Scholar 

  9. Becker, W., Nasios, G., Raab, S. & Jürgens, R. Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Exp. Brain Res. 144, 458–474 (2002).

    Article  PubMed  Google Scholar 

  10. Frissen, I., Campos, J.L., Souman, J.L. & Ernst, M.O. Integration of vestibular and proprioceptive signals for spatial updating. Exp. Brain Res. 212, 163–176 (2011).

    Article  PubMed  Google Scholar 

  11. Jürgens, R. & Becker, W. Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information. Exp. Brain Res. 174, 528–543 (2006).

    Article  PubMed  Google Scholar 

  12. Telford, L., Howard, I.P. & Ohmi, M. Heading judgments during active and passive self-motion. Exp. Brain Res. 104, 502–510 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg, J.M. et al. The Vestibular System: a Sixth Sense (Oxford University Press, 2012).

  14. Hitier, M., Besnard, S. & Smith, P.F. Vestibular pathways involved in cognition. Front. Integr. Nuerosci. 8, 59 (2014).

    Article  Google Scholar 

  15. Shinder, M.E. & Taube, J.S. Differentiating ascending vestibular pathways to the cortex involved in spatial cognition. J. Vestib. Res. 20, 3–23 (2010).

    PubMed  Google Scholar 

  16. Yoder, R.M. & Taube, J.S. The vestibular contribution to the head direction signal and navigation. Front. Integr. Neurosci. https://dx.doi.org/10.3389/fnint.2014.00032 (2014).

  17. Guldin, W.O. & Grüsser, O.J. Is there a vestibular cortex? Trends Neurosci. 21, 254–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Clark, B.J. & Harvey, R.E. Do the anterior and lateral thalamic nuclei make distinct contributions to spatial representation and memory? Neurobiol. Learn. Mem. 133, 69–78 (2016).

    Article  PubMed  Google Scholar 

  19. Taube, J.S. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30, 181–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Taube, J.S., Muller, R.U. & Ranck, J.B. Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taube, J.S., Muller, R.U. & Ranck, J.B. Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tryon, V.L. et al. Magnetic field polarity fails to influence the directional signal carried by the head direction cell network and the behavior of rats in a task requiring magnetic field orientation. Behav. Neurosci. 126, 835–844 (2012).

    Article  PubMed  Google Scholar 

  23. Shinder, M.E. & Taube, J.S. Responses of head direction cells in the anterodorsal thalamus during inversion. Soc. Neurosci. Poster 895.1 (2010).

  24. Yoder, R.M., Clark, B.J. & Taube, J.S. Origins of landmark encoding in the brain. Trends Neurosci. 34, 561–571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robertson, R.G., Rolls, E.T., Georges-François, P. & Panzeri, S. Head direction cells in the primate pre-subiculum. Hippocampus 9, 206–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Shine, J.P., Valdés-Herrera, J.P., Hegarty, M. & Wolbers, T. The human retrosplenial cortex and thalamus code head direction in a global reference frame. J. Neurosci. 36, 6371–6381 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stackman, R.W. & Taube, J.S. Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input. J. Neurosci. 17, 4349–4358 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shinder, M.E. & Taube, J.S. Active and passive movement are encoded equally by head direction cells in the anterodorsal thalamus. J. Neurophysiol. 106, 788–800 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Knierim, J.J., Kudrimoti, H.S. & McNaughton, B.L. Place cells, head direction cells, and the learning of landmark stability. J. Neurosci. 15, 1648–1659 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taube, J.S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J. Neurosci. 15, 70–86 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zugaro, M.B., Tabuchi, E., Fouquier, C., Berthoz, A. & Wiener, S.I. Active locomotion increases peak firing rates of anterodorsal thalamic head direction cells. J. Neurophysiol. 86, 692–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Taube, J.S. & Burton, H.L. Head direction cell activity monitored in a novel environment and during a cue conflict situation. J. Neurophysiol. 74, 1953–1971 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Yoder, R.M. et al. Both visual and idiothetic cues contribute to head direction cell stability during navigation along complex routes. J. Neurophysiol. 105, 2989–3001 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stackman, R.W., Golob, E.J., Bassett, J.P. & Taube, J.S. Passive transport disrupts directional path integration by rat head direction cells. J. Neurophysiol. 90, 2862–2874 (2003).

    Article  PubMed  Google Scholar 

  35. Arleo, A. et al. Optic flow stimuli update anterodorsal thalamus head direction neuronal activity in rats. J. Neurosci. 33, 16790–16795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blair, H.T. & Sharp, P.E. Visual and vestibular influences on head-direction cells in the anterior thalamus of the rat. Behav. Neurosci. 110, 643–660 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Acharya, L., Aghajan, Z.M., Vuong, C., Moore, J.J. & Mehta, M.R. Causal influence of visual cues on hippocampal directional selectivity. Cell 164, 197–207 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Biazoli, C.E. Jr., Goto, M., Campos, A.M. & Canteras, N.S. The supragenual nucleus: a putative relay station for ascending vestibular signs to head direction cells. Brain Res. 1094, 138–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Clark, B.J. & Taube, J.S. Vestibular and attractor network basis of the head direction cell signal in subcortical circuits. Front. Neural Circuits https://dx.doi.org/10.3389/fncir.2012.00007 (2012).

  40. Bassett, J.P. & Taube, J.S. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus. J. Neurosci. 21, 5740–5751 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dumont, J.R., Winter, S.S., Farnes, K.B. & Taube, J.S. Neural correlates within nucleus prepositus and paragigantocellularis during active and passive movement. Soc. Neurosci. Poster 631.26 (2015).

  42. Sharp, P.E., Tinkelman, A. & Cho, J. Angular velocity and head direction signals recorded from the dorsal tegmental nucleus of Gudden in the rat: implications for path integration in the head direction cell circuit. Behav. Neurosci. 115, 571–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Knierim, J.J. & Zhang, K. Attractor dynamics of spatially correlated neural activity in the limbic system. Annu. Rev. Neurosci. 35, 267–285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bassett, J.P., Tullman, M.L. & Taube, J.S. Lesions of the tegmentomammillary circuit in the head direction system disrupt the head direction signal in the anterior thalamus. J. Neurosci. 27, 7564–7577 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharp, P.E., Blair, H.T. & Cho, J. The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci. 24, 289–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Peyrache, A., Lacroix, M.M., Petersen, P.C. & Buzsáki, G. Internally organized mechanisms of the head direction sense. Nat. Neurosci. 18, 569–575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beraneck, M. & Cullen, K.E. Activity of vestibular nuclei neurons during vestibular and optokinetic stimulation in the alert mouse. J. Neurophysiol. 98, 1549–1565 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Medrea, I. & Cullen, K.E. Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion. J. Neurophysiol. 110, 2704–2717 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cullen, K.E. The neural encoding of self-motion. Curr. Opin. Neurobiol. 21, 587–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Cullen, K.E. The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 35, 185–196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grüsser, O.J., Pause, M. & Schreiter, U. Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J. Physiol. (Lond.) 430, 559–583 (1990).

    Article  Google Scholar 

  52. Lang, W., Büttner-Ennever, J.A. & Büttner, U. Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res. 177, 3–17 (1979).

    Article  CAS  PubMed  Google Scholar 

  53. Marlinski, V. & McCrea, R.A. Self-motion signals in vestibular nuclei neurons projecting to the thalamus in the alert squirrel monkey. J. Neurophysiol. 101, 1730–1741 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cullen, K.E. & Minor, L.B. Semicircular canal afferents similarly encode active and passive head-on-body rotations: implications for the role of vestibular efference. J. Neurosci. 22, RC226 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reisine, H. & Raphan, T. Unit activity in the vestibular nuclei of monkeys during off-vertical axis rotation. Ann. NY Acad. Sci. 656, 954–956 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Jamali, M., Sadeghi, S.G. & Cullen, K.E. Response of vestibular nerve afferents innervating utricle and saccule during passive and active translations. J. Neurophysiol. 101, 141–149 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sadeghi, S.G., Minor, L.B. & Cullen, K.E. Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy. J. Neurophysiol. 97, 1503–1514 (2007).

    Article  PubMed  Google Scholar 

  58. Carriot, J., Brooks, J.X. & Cullen, K.E. Multimodal integration of self-motion cues in the vestibular system: active versus passive translations. J. Neurosci. 33, 19555–19566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carriot, J., Jamali, M., Brooks, J.X. & Cullen, K.E. Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception. J. Neurosci. 35, 3555–3565 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roy, J.E. & Cullen, K.E. Selective processing of vestibular reafference during self-generated head motion. J. Neurosci. 21, 2131–2142 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roy, J.E. & Cullen, K.E. Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J. Neurosci. 24, 2102–2111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Straka, H., Zwergal, A. & Cullen, K.E. Vestibular animal models: contributions to understanding physiology and disease. J. Neurol. 263 (Suppl. 1), 10–23 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  63. Brooks, J.X. & Cullen, K.E. Early vestibular processing does not discriminate active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback. J. Neurophysiol. 111, 2465–2478 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cullen, K.E. & Brooks, J.X. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum. Cerebellum 14, 31–34 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cullen, K.E. The neural encoding of self-generated and externally applied movement: implications for the perception of self-motion and spatial memory. Front. Integr. Neurosci. 7, 108 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shinder, M.E. & Taube, J.S. Resolving the active versus passive conundrum for head direction cells. Neuroscience 270, 123–138 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. McCrea, R.A. & Horn, A.K.E. Nucleus prepositus. Prog. Brain Res. 151, 205–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Butler, W.N., Smith, K.S., van der Meer, M.A.A. & Taube, J.S. The head-direction signal plays a functional role as a neural compass during navigation. Curr. Biol. 27, 1259–1267 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dale, A. & Cullen, K.E. The nucleus prepositus predominantly outputs eye movement-related information during passive and active self-motion. J. Neurophysiol. 109, 1900–1911 (2013).

    Article  PubMed  Google Scholar 

  70. Dale, A. & Cullen, K.E. Local population synchrony and the encoding of eye position in the primate neural integrator. J. Neurosci. 35, 4287–4295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McFarland, J.L. & Fuchs, A.F. Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J. Neurophysiol. 68, 319–332 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Georges-François, P., Rolls, E.T. & Robertson, R.G. Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. Cereb. Cortex 9, 197–212 (1999).

    Article  PubMed  Google Scholar 

  73. Rolls, E.T., Robertson, R.G. & Georges-François, P. Spatial view cells in the primate hippocampus. Eur. J. Neurosci. 9, 1789–1794 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Killian, N.J., Potter, S.M. & Buffalo, E.A. Saccade direction encoding in the primate entorhinal cortex during visual exploration. Proc. Natl. Acad. Sci. USA 112, 15743–15748 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, B., Dickman, J.D., Taube, J.S. & Angelaki, D.E. Head direction tuned cells in the macaque anterior thalamus. Soc. Neurosci. Poster 444.11 (2015).

  76. Gdowski, G.T. & McCrea, R.A. Neck proprioceptive inputs to primate vestibular nucleus neurons. Exp. Brain Res. 135, 511–526 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Sadeghi, S.G., Mitchell, D.E. & Cullen, K.E. Different neural strategies for multimodal integration: comparison of two macaque monkey species. Exp. Brain Res. 195, 45–57 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Brooks, J.X., Carriot, J. & Cullen, K.E. Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat. Neurosci. 18, 1310–1317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brooks, J.X. & Cullen, K.E. The primate cerebellum selectively encodes unexpected self-motion. Curr. Biol. 23, 947–955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Donato, F. & Moser, E.I. A world away from reality. Nature 533, 325 (2016).

    Google Scholar 

  81. Taube, J.S., Valerio, S. & Yoder, R.M. Is navigation in virtual reality with fMRI really navigation? J. Cogn. Neurosci. 25, 1008–1019 (2013).

    Article  PubMed  Google Scholar 

  82. Gibson, B., Butler, W.N. & Taube, J.S. The head-direction signal is critical for navigation requiring a cognitive map but not for learning a spatial habit. Curr. Biol. 23, 1536–1540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Winter, S.S., Clark, B.J. & Taube, J.S. Spatial navigation. Disruption of the head direction cell network impairs the parahippocampal grid cell signal. Science 347, 870–874 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jacob, P.-Y. An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex. Nat. Neurosci. 20, 173–175 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Aronov, D. & Tank, D.W. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron 84, 442–456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aghajan, Z.M. et al. Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality. Nat. Neurosci. 18, 121–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, G., King, J.A., Burgess, N. & O'Keefe, J. How vision and movement combine in the hippocampal place code. Proc. Natl. Acad. Sci. USA 110, 378–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Jeffery, K.J., Wilson, J.J., Casali, G. & Hayman, R.M. Neural encoding of large-scale three-dimensional space—properties and constraints. Front. Psychol. 6, 297 (2015).

    Article  Google Scholar 

  89. Taube, J.S. Head direction cell firing properties and behavioural performance in 3-D space. J. Physiol. (Lond.) 589, 835–841 (2011).

    Article  CAS  Google Scholar 

  90. Finkelstein, A. et al. Three-dimensional head-direction coding in the bat brain. Nature 517, 159–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Calton, J.L. & Taube, J.S. Degradation of head direction cell activity during inverted locomotion. J. Neurosci. 25, 2420–2428 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wilson, J.J., Page, H. & Jeffery, K.J. A proposed rule for updating of the head direction cell reference frame following rotations in three dimensions. Preprint at bioRxiv https://doi.org/10.1101/043711 (2016).

  93. Yoder, R.M. & Taube, J.S. Head direction cell activity in mice: robust directional signal depends on intact otolith organs. J. Neurosci. 29, 1061–1076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laurens, J., Kim, B., Dickman, J.D. & Angelaki, D.E. Gravity orientation tuning in macaque anterior thalamus. Nat. Neurosci. 19, 1566–1568 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mackrous, I., Carriot, J., Jamali, M., Brooks, J. & Cullen, K. Selective encoding of unexpected head tilt by the central neurons takes into account the cerebellar computation output. Soc. Neurosci. Poster 718.04 http://www.abstractsonline.com/pp8/#!/4071/presentation/15239 (2016).

  96. Aitken, P., Zheng, Y. & Smith, P.F. The regulation of hippocampal theta rhythm by the vestibular system. J. Neurophysiol. (in the press).

  97. Jacob, P.-Y., Poucet, B., Liberge, M., Save, E. & Sargolini, F. Vestibular control of entorhinal cortex activity in spatial navigation. Front. Integrative Neurosci. 8, 38 (2014).

    Article  Google Scholar 

  98. Brandon, M.P. et al. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332, 595–599 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Koenig, J., Linder, A.N., Leutgeb, J.K. & Leutgeb, S. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Winter, S.S., Mehlman, M.L., Clark, B.J. & Taube, J.S. Passive transport disrupts grid signals in the parahippocampal cortex. Curr. Biol. 25, 2493–2502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kathleen E Cullen or Jeffrey S Taube.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cullen, K., Taube, J. Our sense of direction: progress, controversies and challenges. Nat Neurosci 20, 1465–1473 (2017). https://doi.org/10.1038/nn.4658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing