Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural activity promotes long-distance, target-specific regeneration of adult retinal axons

Abstract

Axons in the mammalian CNS fail to regenerate after injury. Here we show that if the activity of mouse retinal ganglion cells (RGCs) is increased by visual stimulation or using chemogenetics, their axons regenerate. We also show that if enhancement of neural activity is combined with elevation of the cell-growth-promoting pathway involving mammalian target of rapamycin (mTOR), RGC axons regenerate long distances and re-innervate the brain. Analysis of genetically labeled RGCs revealed that this regrowth can be target specific: RGC axons navigated back to their correct visual targets and avoided targets incorrect for their function. Moreover, these regenerated connections were successful in partially rescuing a subset of visual behaviors. Our findings indicate that combining neural activity with activation of mTOR can serve as powerful tool for enhancing axon regeneration, and they highlight the remarkable capacity of CNS neurons to re-establish accurate circuit connections in adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual stimulation triggers regeneration of RGC axons.
Figure 2: Neural activity regulates regeneration of RGC axons.
Figure 3: Combining biased visual stimulation and enhancement of mTOR signaling with cRheb1 overexpression triggers long-distance regeneration of RGC axons.
Figure 4: Combining biased visual stimulation and enhancement of mTOR signaling with cRheb1 overexpression allows RGCs to regenerate their axons back to their targets.
Figure 5: Specificity of axon regeneration from distinct RGC types to their visual targets.
Figure 6: Removing one eye and enhancement of mTOR signaling with cRheb1 overexpression trigger RGC regeneration to correct visual targets in the brain.
Figure 7: Combined daily visual stimulation and enhancement of mTOR signaling with cRheb1 overexpression partially rescues visually guided behaviors.

Similar content being viewed by others

References

  1. Liu, K., Tedeschi, A., Park, K.K. & He, Z. Neuronal intrinsic mechanisms of axon regeneration. Annu. Rev. Neurosci. 34, 131–152 (2011).

    PubMed  Google Scholar 

  2. Vidal-Sanz, M., Bray, G.M., Villegas-Pérez, M.P., Thanos, S. & Aguayo, A.J. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J. Neurosci. 7, 2894–2909 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, M.S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    CAS  PubMed  Google Scholar 

  4. Cafferty, W.B., Duffy, P., Huebner, E. & Strittmatter, S.M. MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J. Neurosci. 30, 6825–6837 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Davies, S.J. et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683 (1997).

    CAS  PubMed  Google Scholar 

  6. Gallo, V., Bertolotto, A. & Levi, G. The proteoglycan chondroitin sulfate is present in a subpopulation of cultured astrocytes and in their precursors. Dev. Biol. 123, 282–285 (1987).

    CAS  PubMed  Google Scholar 

  7. Bundesen, L.Q., Scheel, T.A., Bregman, B.S. & Kromer, L.F. Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J. Neurosci. 23, 7789–7800 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pasterkamp, R.J., Giger, R.J. & Verhaagen, J. Regulation of semaphorin III/collapsin-1 gene expression during peripheral nerve regeneration. Exp. Neurol. 153, 313–327 (1998).

    CAS  PubMed  Google Scholar 

  9. Shewan, D., Berry, M. & Cohen, J. Extensive regeneration in vitro by early embryonic neurons on immature and adult CNS tissue. J. Neurosci. 15, 2057–2062 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Park, K.K. et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963–966 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai, D., Shen, Y., De Bellard, M., Tang, S. & Filbin, M.T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101 (1999).

    CAS  PubMed  Google Scholar 

  12. Leaver, S.G. et al. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther. 13, 1328–1341 (2006).

    CAS  PubMed  Google Scholar 

  13. Moore, D.L. et al. KLF family members regulate intrinsic axon regeneration ability. Science 326, 298–301 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, P.D. et al. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64, 617–623 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pernet, V. & Schwab, M.E. Lost in the jungle: new hurdles for optic nerve axon regeneration. Trends Neurosci. 37, 381–387 (2014).

    CAS  PubMed  Google Scholar 

  16. de Lima, S. et al. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc. Natl. Acad. Sci. USA 109, 9149–9154 (2012).

    CAS  PubMed  Google Scholar 

  17. Chierzi, S., Strettoi, E., Cenni, M.C. & Maffei, L. Optic nerve crush: axonal responses in wild-type and bcl-2 transgenic mice. J. Neurosci. 19, 8367–8376 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun, F. et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480, 372–375 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo, X. et al. Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Exp. Neurol. 247, 653–662 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldberg, J.L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702 (2002).

    CAS  PubMed  Google Scholar 

  21. Urban, D.J. & Roth, B.L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015).

    CAS  PubMed  Google Scholar 

  22. Kwong, J.M., Caprioli, J. & Piri, N. RNA binding protein with multiple splicing: a new marker for retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 51, 1052–1058 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Yamagata, K. et al. rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J. Biol. Chem. 269, 16333–16339 (1994).

    CAS  PubMed  Google Scholar 

  24. Maier, I.C. et al. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J. Neurosci. 28, 9386–9403 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dhande, O.S., Stafford, B.K., Lim, J.A. & Huberman, A.D. Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Ann. Rev. Vis. Sci. 1, 291–328 (2015).

    Google Scholar 

  26. Huberman, A.D. et al. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59, 425–438 (2008).

    CAS  PubMed  Google Scholar 

  27. Duan, X. et al. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85, 1244–1256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hattar, S., Liao, H.W., Takao, M., Berson, D.M. & Yau, K.W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun, L.O. et al. Functional assembly of accessory optic system circuitry critical for compensatory eye movements. Neuron 86, 971–984 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Güler, A.D. et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453, 102–105 (2008).

    PubMed  PubMed Central  Google Scholar 

  31. Leamey, C.A. et al. Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLoS Biol. 5, e241 (2007).

    PubMed  PubMed Central  Google Scholar 

  32. Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).

    CAS  PubMed  Google Scholar 

  33. Shang, C. et al. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348, 1472–1477 (2015).

    CAS  PubMed  Google Scholar 

  34. Zhao, X., Liu, M. & Cang, J. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron 84, 202–213 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Osterhout, J.A., Stafford, B.K., Nguyen, P.L., Yoshihara, Y. & Huberman, A.D. Contactin-4 mediates axon-target specificity and functional development of the accessory optic system. Neuron 86, 985–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Prusky, G.T., Silver, B.D., Tschetter, W.W., Alam, N.M. & Douglas, R.M. Experience-dependent plasticity from eye opening enables lasting, visual cortex-dependent enhancement of motion vision. J. Neurosci. 28, 9817–9827 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lucas, R.J., Douglas, R.H. & Foster, R.G. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 4, 621–626 (2001).

    CAS  PubMed  Google Scholar 

  38. Sweeney, N.T., Tierney, H. & Feldheim, D.A. Tbr2 is required to generate a neural circuit mediating the pupillary light reflex. J. Neurosci. 34, 5447–5453 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Li, S. et al. Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling. Proc. Natl. Acad. Sci. USA 113, 1937–1942 (2016).

    CAS  PubMed  Google Scholar 

  40. Fu, L., Lo, A.C., Lai, J.S. & Shih, K.C. The role of electrical stimulation therapy in ophthalmic diseases. Graefes Arch. Clin. Exp. Ophthalmol. 253, 171–176 (2015).

    CAS  PubMed  Google Scholar 

  41. Watanabe, M., Sawai, H. & Fukuda, Y. Number, distribution, and morphology of retinal ganglion cells with axons regenerated into peripheral nerve graft in adult cats. J. Neurosci. 13, 2105–2117 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O. & Björklund, A. Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature 347, 556–558 (1990).

    CAS  PubMed  Google Scholar 

  43. Harvey, P., Gong, B., Rossomando, A.J. & Frank, E. Topographically specific regeneration of sensory axons in the spinal cord. Proc. Natl. Acad. Sci. USA 107, 11585–11590 (2010).

    CAS  PubMed  Google Scholar 

  44. King, C.E. et al. Transient up-regulation of retinal EphA3 and EphA5, but not ephrin-A2, coincides with re-establishment of a topographic map during optic nerve regeneration in goldfish. Exp. Neurol. 183, 593–599 (2003).

    CAS  PubMed  Google Scholar 

  45. Bei, F. et al. Restoration of visual function by enhancing conduction in regenerated axons. Cell 164, 219–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Barres, B.A. & Raff, M.C. Axonal control of oligodendrocyte development. J. Cell Biol. 147, 1123–1128 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Seabrook, O. Dhande, R. El-Danaf and other members of the Huberman laboratory for comments on earlier versions of this manuscript. This work was supported by grants from the National Institutes of Health National Eye Institute R01, NIH/NEI R01EY026100 (ADH), The Pew Biomedical Foundation, The McKnight Foundation and The Glaucoma Research Foundation Catalyst for a Cure Initiative.

Author information

Authors and Affiliations

Authors

Contributions

J.-H.A.L. carried out all experiments, imaging, analysis of the data, and figure preparation. B.K.S. performed recordings from RGCs and the analysis of activity in response to chemical genetic manipulations. P.L.N. assisted with the visual stimulation experiments and tissue collection, and provided technical assistance. B.V.L. contributed to the visual stimulation experiments and tissue collection. C.W. prepared AAV-cRheb1 viruses. K.Z. provided technical assistance for optic nerve crush surgery and AAV-cRheb1. Z.H. provided AAV-cRheb1 virus. A.D.H. supervised the project and data analyses. J.-H.A.L., Z.H., B.K.S. and A.D.H. wrote the paper.

Corresponding author

Correspondence to Andrew D Huberman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–23 and Supplementary Tables 1 and 2 (PDF 14732 kb)

Supplementary Methods Checklist (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JH., Stafford, B., Nguyen, P. et al. Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nat Neurosci 19, 1073–1084 (2016). https://doi.org/10.1038/nn.4340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing