Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Olfactory cortical neurons read out a relative time code in the olfactory bulb

Abstract

Odor stimulation evokes complex spatiotemporal activity in the olfactory bulb, suggesting that both the identity of activated neurons and the timing of their activity convey information about odors. However, whether and how downstream neurons decipher these temporal patterns remains unknown. We addressed this question by measuring the spiking activity of downstream neurons while optogenetically stimulating two foci in the olfactory bulb with varying relative timing in mice. We found that the overall spike rates of piriform cortex neurons (PCNs) were sensitive to the relative timing of activation. Posterior PCNs showed higher sensitivity to relative input times than neurons in the anterior piriform cortex. In contrast, olfactory bulb neurons rarely showed such sensitivity. Thus, the brain can transform a relative time code in the periphery into a firing rate–based representation in central brain areas, providing evidence for the relevance of a relative time–based code in the olfactory bulb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of responses to single spot optogenetic activation of olfactory nerve input.
Figure 2: Acquisition of TTCs for olfactory bulb and PCNs.
Figure 3: Piriform cortex neurons show higher sensitivity to the lag of olfactory bulb stimulation.
Figure 4: Order–specific responses of PCNs.
Figure 5: Delayed inhibition shapes the responsiveness of PCNs.
Figure 6: Rate code conveys relative timing information progressively more at the central areas.
Figure 7: Order selectivity is largely preserved across different respiration phases.
Figure 8: Direct activation of mitral and tufted cells produced consistent results.

Similar content being viewed by others

References

  1. Adrian, E.D. The impulses produced by sensory nerve endings: part I. J. Physiol. (Lond.) 61, 49–72 (1926).

    Article  CAS  Google Scholar 

  2. Wehr, M. & Laurent, G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. VanRullen, R., Guyonneau, R. & Thorpe, S.J. Spike times make sense. Trends Neurosci. 28, 1–4 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Laurent, G. A systems perspective on early olfactory coding. Science 286, 723–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Hopfield, J.J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Spors, H. & Grinvald, A. Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34, 301–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Wesson, D.W., Carey, R.M., Verhagen, J.V. & Wachowiak, M. Rapid encoding and perception of novel odors in the rat. PLoS Biol. 6, e82 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Macrides, F. & Chorover, S.L. Olfactory bulb units: activity correlated with inhalation cycles and odor quality. Science 175, 84–87 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Cang, J. & Isaacson, J.S. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J. Neurosci. 23, 4108–4116 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Margrie, T.W. & Schaefer, A.T. Theta oscillation coupled spike latencies yield computational vigor in a mammalian sensory system. J. Physiol. (Lond.) 546, 363–374 (2003).

    Article  CAS  Google Scholar 

  11. Shusterman, R., Smear, M.C., Koulakov, A.A. & Rinberg, D. Precise olfactory responses tile the sniff cycle. Nat. Neurosci. 14, 1039–1044 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Cury, K.M. & Uchida, N. Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb. Neuron 68, 570–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Blumhagen, F. et al. Neuronal filtering of multiplexed odor representations. Nature 479, 493–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Smear, M., Shusterman, R., O'Connor, R., Bozza, T. & Rinberg, D. Perception of sniff phase in mouse olfaction. Nature 479, 397–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Miura, K., Mainen, Z.F. & Uchida, N. Odor representations in olfactory cortex: distributed rate coding and decorrelated population activity. Neuron 74, 1087–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kadohisa, M. & Wilson, D.A. Olfactory cortical adaptation facilitates detection of odors against background. J. Neurophysiol. 95, 1888–1896 (2006).

    Article  PubMed  Google Scholar 

  17. Stettler, D.D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Luna, V.M. & Schoppa, N.E. GABAergic circuits control input-spike coupling in the piriform cortex. J. Neurosci. 28, 8851–8859 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Apicella, A., Yuan, Q., Scanziani, M. & Isaacson, J.S. Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli. J. Neurosci. 30, 14255–14260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davison, I.G. & Ehlers, M.D. Neural circuit mechanisms for pattern detection and feature combination in olfactory cortex. Neuron 70, 82–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dhawale, A.K., Hagiwara, A., Bhalla, U.S., Murthy, V.N. & Albeanu, D.F. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat. Neurosci. 13, 1404–1412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arenkiel, B.R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carey, R.M., Verhagen, J.V., Wesson, D.W., Pirez, N. & Wachowiak, M. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. J. Neurophysiol. 101, 1073–1088 (2009).

    Article  PubMed  Google Scholar 

  24. Wachowiak, M. All in a sniff: olfaction as a model for active sensing. Neuron 71, 962–973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uchida, N. & Mainen, Z.F. Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Davison, I.G. & Katz, L.C. Sparse and selective odor coding by mitral/tufted neurons in the main olfactory bulb. J. Neurosci. 27, 2091–2101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagayama, S., Takahashi, Y.K., Yoshihara, Y. & Mori, K. Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb. J. Neurophysiol. 91, 2532–2540 (2004).

    Article  PubMed  Google Scholar 

  28. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  29. Stokes, C.C. & Isaacson, J.S. From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 67, 452–465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki, N. & Bekkers, J.M. Microcircuits mediating feedforward and feedback synaptic inhibition in the piriform cortex. J. Neurosci. 32, 919–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Satou, M., Mori, K., Tazawa, Y. & Takagi, S.F. Interneurons mediating fast postsynaptic inhibition in pyriform cortex of the rabbit. J. Neurophysiol. 50, 89–101 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Poo, C. & Isaacson, J.S. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62, 850–861 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buck, L.B. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Mori, K. & Sakano, H. How is the olfactory map formed and interpreted in the Mammalian brain? Annu. Rev. Neurosci. 34, 467–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Perez-Orive, J. et al. Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Carey, R.M. & Wachowiak, M. Effect of sniffing on the temporal structure of mitral/tufted cell output from the olfactory bulb. J. Neurosci. 31, 10615–10626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Junek, S., Kludt, E., Wolf, F. & Schild, D. Olfactory coding with patterns of response latencies. Neuron 67, 872–884 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Schaefer, A.T. & Margrie, T.W. Spatiotemporal representations in the olfactory system. Trends Neurosci. 30, 92–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Haberly, L.B. Summed potentials evoked in opossum prepyriform cortex. J. Neurophysiol. 36, 775–788 (1973).

    Article  CAS  PubMed  Google Scholar 

  41. Franks, K.M. et al. Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72, 49–56 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poo, C. & Isaacson, J.S. A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 72, 41–48 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hagiwara, A., Pal, S.K., Sato, T.F., Wienisch, M. & Murthy, V.N. Optophysiological analysis of associational circuits in the olfactory cortex. Front. Neural Circuits 6, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mouly, A.M., Litaudon, P., Chabaud, P., Ravel, N. & Gervais, R. Spatiotemporal distribution of a late synchronized activity in olfactory pathways following stimulation of the olfactory bulb in rats. Eur. J. Neurosci. 10, 1128–1135 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Oswald, A.M. & Urban, N.N. Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex. J. Neurosci. 32, 6092–6104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suzuki, N. & Bekkers, J.M. Neural coding by two classes of principal cells in the mouse piriform cortex. J. Neurosci. 26, 11938–11947 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Branco, T., Clark, B.A. & Hausser, M. Dendritic discrimination of temporal input sequences in cortical neurons. Science 329, 1671–1675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bathellier, B., Margrie, T.W. & Larkum, M.E. Properties of piriform cortex pyramidal cell dendrites: implications for olfactory circuit design. J. Neurosci. 29, 12641–12652 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Padmanabhan, K. & Urban, N.N. Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nat. Neurosci. 13, 1276–1282 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Angelo, K. et al. A biophysical signature of network affiliation and sensory processing in mitral cells. Nature 488, 375–378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859–865 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Schmitzer-Torbert, N. & Redish, A.D. Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the multiple T task. J. Neurophysiol. 91, 2259–2272 (2004).

    Article  PubMed  Google Scholar 

  54. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Dulac (Harvard University) for sharing resources generously, comments on the manuscript and providing Tbet-cre; ChR2loxP/loxP mice (generated by A.L.). We thank E. Soucy and T. Sato for technical support and D.F. Albeanu and A.K. Dhawale for technical advice. We thank Y. Ben-Shaul, C. Poo, N. Eshel and J.Y. Cohen for their comments on the manuscript. This work was supported by Human Frontier Science Program (R.H.), a Howard Hughes Medical Institute Collaborative Innovation Award, a Smith Family New Investigator Award, the Alfred Sloan Foundation and the Milton Fund (N.U.), and a grant from the US National Institutes of Health (V.N.M.).

Author information

Authors and Affiliations

Authors

Contributions

R.H. and N.U. conceived the experiment. R.H. performed the experiment. A.L. generated and characterized the Tbet-cre; ChR2loxP/loxP mice, and L.M. and H.Z. generated and characterized the ChR2loxP/loxP mice. V.N.M. provided the Omp-ChR2 mice. R.H. and N.U. wrote the paper and A.L., V.N.M. and H.Z. provided feedback on the manuscript.

Corresponding author

Correspondence to Naoshige Uchida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 5930 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddad, R., Lanjuin, A., Madisen, L. et al. Olfactory cortical neurons read out a relative time code in the olfactory bulb. Nat Neurosci 16, 949–957 (2013). https://doi.org/10.1038/nn.3407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3407

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing