Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance

This article has been updated

Abstract

Excessive glucocorticoid exposure during chronic stress causes synapse loss and learning impairment. Under normal physiological conditions, glucocorticoid activity oscillates in synchrony with the circadian rhythm. Whether and how endogenous glucocorticoid oscillations modulate synaptic plasticity and learning is unknown. Here we show that circadian glucocorticoid peaks promote postsynaptic dendritic spine formation in the mouse cortex after motor skill learning, whereas troughs are required for stabilizing newly formed spines that are important for long-term memory retention. Conversely, chronic and excessive exposure to glucocorticoids eliminates learning-associated new spines and disrupts previously acquired memories. Furthermore, we show that glucocorticoids promote rapid spine formation through a non-transcriptional mechanism by means of the LIM kinase–cofilin pathway and increase spine elimination through transcriptional mechanisms involving mineralocorticoid receptor activation. Together, these findings indicate that tightly regulated circadian glucocorticoid oscillations are important for learning-dependent synaptic formation and maintenance. They also delineate a new signaling mechanism underlying these effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circadian glucocorticoid peaks promote spine formation after learning.
Figure 2: Circadian glucocorticoid troughs preserve newly formed spines.
Figure 3: Disruption of glucocorticoid troughs reduces learning-dependent spine pruning.
Figure 4: Chronic glucocorticoid exposure causes spine loss and memory impairment.
Figure 5: Glucocorticoids promote spine formation and pruning through distinct signaling pathways.
Figure 6: Glucocorticoids promote spine formation rapidly through non-transcriptional regulation of LIMK1-cofilin activity.

Similar content being viewed by others

Change history

  • 06 May 2013

    In the version of this article initially published online, the glucocorticoid receptor was identified at first mention as the type I corticosteroid receptor and the mineralocorticoid receptor as the type II; the reverse is true. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Jöels, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19, 269–301 (1998).

    CAS  PubMed  Google Scholar 

  2. McEwen, B.S. Protective and damaging effects of stress mediators. N. Engl. J. Med. 338, 171–179 (1998).

    CAS  PubMed  Google Scholar 

  3. Lupien, S.J. et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat. Neurosci. 1, 69–73 (1998).

    CAS  PubMed  Google Scholar 

  4. de Quervain, D.J.F., Roozendaal, B. & McGaugh, J.L. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394, 787–790 (1998).

    CAS  PubMed  Google Scholar 

  5. Bangasser, D.A. & Shors, T.J. The hippocampus is necessary for enhancements and impairments of learning following stress. Nat. Neurosci. 10, 1401–1403 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shors, T.J., Weiss, C. & Thompson, R.F. Stress-induced facilitation of classical conditioning. Science 257, 537–539 (1992).

    CAS  PubMed  Google Scholar 

  7. Quirarte, G.L., Roozendaal, B. & McGaugh, J.L. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA 94, 14048–14053 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bailey, C.H. & Kandel, E.R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).

    CAS  PubMed  Google Scholar 

  9. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    CAS  PubMed  Google Scholar 

  10. Yang, G., Pan, F. & Gan, W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, T.H. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lai, C.S.W., Franke, T.F. & Gan, W.B. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483, 87–91 (2012).

    CAS  PubMed  Google Scholar 

  13. Liston, C. & Gan, W.B. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc. Natl. Acad. Sci. USA 108, 16074–16079 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wellman, C.L. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J. Neurobiol. 49, 245–253 (2001).

    CAS  PubMed  Google Scholar 

  15. Radley, J.J. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb. Cortex 16, 313–320 (2006).

    PubMed  Google Scholar 

  16. Liston, C. et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325, 621–625 (2009).

    CAS  PubMed  Google Scholar 

  18. Watanabe, Y., Gould, E. & McEwen, B.S. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 588, 341–345 (1992).

    CAS  PubMed  Google Scholar 

  19. Morsink, M.C. et al. Acute activation of hippocampal glucocorticoid receptors results in different waves of gene expression throughout time. J. Neuroendocrinol. 18, 239–252 (2006).

    CAS  PubMed  Google Scholar 

  20. Datson, N.A., van der Perk, J., De Kloet, E.R. & Vreugdenhil, E. Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur. J. Neurosci. 14, 675–689 (2001).

    CAS  PubMed  Google Scholar 

  21. Stavreva, D.A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 11, 1093–1102 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuen, E.Y. et al. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc. Natl. Acad. Sci. USA 106, 14075–14079 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Karst, H. et al. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc. Natl. Acad. Sci. USA 102, 19204–19207 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lösel, R. & Wehling, M. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol. 4, 46–56 (2003).

    PubMed  Google Scholar 

  25. Popoli, M., Yan, Z., McEwen, B.S. & Sanacora, G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13, 22–37 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Di, S., Malcher-Lopes, R., Halmos, K.C. & Tasker, J.G. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J. Neurosci. 23, 4850–4857 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hill, M.N. et al. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J. Neurosci. 31, 10506–10515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hübener, M. & Bonhoeffer, T. Searching for engrams. Neuron 67, 363–371 (2010).

    Article  PubMed  Google Scholar 

  29. Roozendaal, B., Okuda, S., Van der Zee, E.A. & McGaugh, J.L. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA 103, 6741–6746 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lohmann, C. & Bonhoeffer, T. A role for local calcium signaling in rapid synaptic partner selection by dendritic filopodia. Neuron 59, 253–260 (2008).

    CAS  PubMed  Google Scholar 

  31. Knott, G.W., Holtmaat, A., Wilbrecht, L., Welker, E. & Svoboda, K. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9, 1117–1124 (2006).

    CAS  PubMed  Google Scholar 

  32. Reul, J.M.H.M. & de Kloet, E.R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511 (1985).

    CAS  PubMed  Google Scholar 

  33. Gu, J. et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat. Neurosci. 13, 1208–1215 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133 (2002).

    CAS  PubMed  Google Scholar 

  35. Bellugi, U., Lichtenberger, L., Mills, D., Galaburda, A. & Korenberg, J.R. Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci. 22, 197–207 (1999).

    CAS  PubMed  Google Scholar 

  36. Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23, 477–501 (2000).

    CAS  PubMed  Google Scholar 

  37. Miller, N.L., Tvaryanas, A.P. & Shattuck, L.G. Accommodating adolescent sleep-wake patterns: the effects of shifting the timing of sleep on training effectiveness. Sleep 35, 1123–1136 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Atkinson, G. & Reilly, T. Circadian variation in sports performance. Sports Med. 21, 292–312 (1996).

    CAS  PubMed  Google Scholar 

  39. Ruby, N.F. et al. Hippocampal-dependent learning requires a functional circadian system. Proc. Natl. Acad. Sci. USA 105, 15593–15598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wright, K.P., Hull, J.T., Hughes, R.J., Ronda, J.M. & Czeisler, C.A. Sleep and wakefulness out of phase with internal biological time impairs learning in humans. J. Cogn. Neurosci. 18, 508–521 (2006).

    PubMed  Google Scholar 

  41. Chaudhury, D. & Colwell, C.S. Circadian modulation of learning and memory in fear-conditioned mice. Behav. Brain Res. 133, 95–108 (2002).

    PubMed  Google Scholar 

  42. Dailey, M.E. & Smith, S.J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Buffelli, M. et al. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature 424, 430–434 (2003).

    CAS  PubMed  Google Scholar 

  44. Colman, H., Nabekura, J. & Lichtman, J.W. Alterations in synaptic strength preceding axon withdrawal. Science 275, 356–361 (1997).

    CAS  PubMed  Google Scholar 

  45. Tsankova, N.M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519–525 (2006).

    CAS  PubMed  Google Scholar 

  46. Renthal, W. et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56, 517–529 (2007).

    CAS  PubMed  Google Scholar 

  47. Guan, J.S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Flavell, S.W. & Greenberg, M.E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31, 563–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Flavell, S.W. et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012 (2006).

    CAS  PubMed  Google Scholar 

  50. McNally, J.G., Muller, W.G., Walker, D., Wolford, R. & Hager, G.L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    CAS  PubMed  Google Scholar 

  51. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS  PubMed  Google Scholar 

  52. Yang, G., Pan, F., Parkhurst, C.N., Grutzendler, J. & Gan, W.B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc. 5, 201–208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, C.X. & Waters, R.S. Organization of the mouse motor cortex studied by retrograde tracing and intracortical microstimulation (ICMS) mapping. Can. J. Neurol. Sci. 18, 28–38 (1991).

    CAS  PubMed  Google Scholar 

  54. Campolongo, P. et al. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc. Natl. Acad. Sci. USA 106, 4888–4893 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Karssen, A.M., Meijer, O.C., Berry, A., Pinol, R.S. & de Kloet, E.R. Low doses of dexamethasone can produce a hypocorticosteroid state in the brain. Endocrinology 146, 5587–5595 (2005).

    CAS  PubMed  Google Scholar 

  56. Binder, D.K., Papadopoulos, M.C., Haggie, P.M. & Verkman, A.S. In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching. J. Neurosci. 24, 8049–8056 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeanneteau, F., Garabedian, M.J. & Chao, M.V. Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc. Natl. Acad. Sci. USA 105, 4862–4867 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Buitrago, M.M., Schulz, J.B., Dichgans, J. & Luft, A.R. Short and long-term motor skill learning in an accelerated rotarod training paradigm. Neurobiol. Learn. Mem. 81, 211–216 (2004).

    PubMed  Google Scholar 

  59. Jeanneteau, F., Deinhardt, K., Miyoshi, G., Bennett, A.M. & Chao, M.V. The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nat. Neurosci. 13, 1373–1379 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang, M. & Chen, G. High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat. Protoc. 1, 695–700 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B.S. McEwen and Gan laboratory members for critical comments on this manuscript. This work was supported by grants from the US National Institutes of Health (R01 NS047325 and a subcontract of R01MH085324) to W.-B.G. C.L. is supported by grants from the US National Institute of Mental Health (K99 MH097822) and the DeWitt Wallace Reader's Digest Foundation at Weill Cornell Medical College. F.J. and M.V.C. are supported by grants from the US National Institutes of Health (MH086651 and NS21072).

Author information

Authors and Affiliations

Authors

Contributions

C.L. and W.-B.G. conceived the project and designed all experiments. C.L. collected, quantified and analyzed the in vivo spine remodeling data. J.M.C. and F.J. contributed to the design of the cortical culture experiments, and J.M.C. carried them out and analyzed the results. C.L. obtained cortical biopsies and plasma samples. F.J. and M.V.C. contributed to the biochemical analysis of the samples. Z.J. developed and shared the LIMK1 knockout mouse. C.L. and W.-B.G. wrote the manuscript.

Corresponding authors

Correspondence to Conor Liston or Wen-Biao Gan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–6 (PDF 683 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liston, C., Cichon, J., Jeanneteau, F. et al. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci 16, 698–705 (2013). https://doi.org/10.1038/nn.3387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing