Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cortico-cortical projections in mouse visual cortex are functionally target specific

Abstract

Neurons in primary sensory cortex have diverse response properties, whereas higher cortical areas are specialized. Specific connectivity may be important for areal specialization, particularly in the mouse, where neighboring neurons are functionally diverse. To examine whether higher visual areas receive functionally specific input from primary visual cortex (V1), we used two-photon calcium imaging to measure responses of axons from V1 arborizing in three areas with distinct spatial and temporal frequency preferences. We found that visual preferences of presynaptic boutons in each area were distinct and matched the average preferences of recipient neurons. This specificity could not be explained by organization within V1 and instead was due to both a greater density and greater response amplitude of functionally matched boutons. Projections from a single layer (layer 5) and from secondary visual cortex were also matched to their target areas. Thus, transmission of specific information to downstream targets may be a general feature of cortico-cortical communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional two-photon calcium imaging from the axons of V1 projection neurons.
Figure 2: V1 axons projecting to LM, AL and PM are functionally distinct.
Figure 3: Lack of functional organization for speed in V1.
Figure 4: Layer 5 axons projecting to LM, AL and PM are functionally distinct.
Figure 5: Bias in the number of boutons with target-specific preferences.
Figure 6: Areal bias in the amplitude of responses at different speeds is explained by the activity of a small fraction of boutons.
Figure 7: Axons projecting from LM to AL and PM are functionally distinct.

Similar content being viewed by others

References

  1. Dräger, U.C. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160, 269–290 (1975).

    Article  PubMed  Google Scholar 

  2. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gao, E., DeAngelis, G.C. & Burkhalter, A. Parallel input channels to mouse primary visual cortex. J. Neurosci. 30, 5912–5926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andermann, M.L., Kerlin, A.M., Roumis, D.K., Glickfeld, L.L. & Reid, R.C. Functional specialization of mouse higher visual cortical areas. Neuron 72, 1025–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Marshel, J.H., Garrett, M.E., Nauhaus, I. & Callaway, E.M. Functional specialization of seven mouse visual cortical areas. Neuron 72, 1040–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roth, M.M., Helmchen, F. & Kampa, B.M. Distinct functional properties of primary and posteromedial visual area of mouse neocortex. J. Neurosci. 32, 9716–9726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohki, K., Chung, S., Ch'ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bonin, V., Histed, M.H., Yurgenson, S. & Reid, R.C. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31, 18506–18521 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohki, K. & Reid, R.C. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17, 401–407 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Livingstone, M.S. & Hubel, D.H. Specificity of cortico-cortical connections in monkey visual system. Nature 304, 531–534 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. DeYoe, E.A. & Van Essen, D.C. Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature 317, 58–61 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Livingstone, M.S. & Hubel, D.H. Connections cytochrome between layer 4B of area 17 and the thick oxidase stripes of area 18 in the squirrel monkey. J. Neurosci. 7, 3371–3377 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shipp, S. & Zeki, S. The organization of connections between areas V5 and V2 in macaque monkey visual cortex. Eur. J. Neurosci. 1, 333–354 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Sincich, L.C. & Horton, J.C. Independent projection streams from macaque striate cortex to the second visual area and middle temporal area. J. Neurosci. 23, 5684–5692 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nassi, J.J. & Callaway, E.M. Specialized circuits from primary visual cortex to V2 and area MT. Neuron 55, 799–808 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nassi, J.J. & Callaway, E.M. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10, 360–372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson, R.R. & Burkhalter, A. A polysynaptic feedback circuit in rat visual cortex. J. Neurosci. 17, 7129–7140 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Movshon, J.A. & Newsome, W.T. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J. Neurosci. 16, 7733–7741 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferraina, S., Paré, M. & Wurtz, R.H. Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J. Neurophysiol. 87, 845–858 (2002).

    Article  PubMed  Google Scholar 

  21. Sato, T.R. & Svoboda, K. The functional properties of barrel cortex neurons projecting to the primary motor cortex. J. Neurosci. 30, 4256–4260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jarosiewicz, B., Schummers, J., Malik, W.Q., Brown, E.N. & Sur, M. Functional biases in visual cortex neurons with identified projections to higher cortical targets. Curr. Biol. 22, 269–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Q. & Burkhalter, A. Area map of mouse visual cortex. J. Comp. Neurol. 502, 339–357 (2007).

    Article  PubMed  Google Scholar 

  24. Wang, Q., Gao, E. & Burkhalter, A. Gateways of ventral and dorsal streams in mouse visual cortex. J. Neurosci. 31, 1905–1918 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van den Bergh, G., Zhang, B., Arckens, L. & Chino, Y.M. Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys. J. Comp. Neurol. 518, 2051–2070 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Coogan, T.A. & Burkhalter, A. Hierarchical organization of areas in rat visual cortex. J. Neurosci. 13, 3749–3772 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brenowitz, S.D. & Regehr, W.G. Reliability and heterogeneity of calcium signaling at single presynaptic boutons of cerebellar granule cells. J. Neurosci. 27, 7888–7898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dreosti, E., Odermatt, B., Dorostkar, M.M. & Lagnado, L. A genetically encoded reporter of synaptic activity in vivo. Nat. Methods 6, 883–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petreanu, L. et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489, 299–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nikolaou, N. et al. Parametric functional maps of visual inputs to the tectum. Neuron 76, 317–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Churchland, A.K. & Lisberger, S.G. Discharge properties of MST neurons that project to the frontal pursuit area in macaque monkeys. J. Neurophysiol. 94, 1084–1090 (2005).

    Article  PubMed  Google Scholar 

  32. Swadlow, H.A. & Weyand, T.G. Efferent systems of the rabbit visual cortex: laminar distribution of the cells of origin, axonal conduction velocities, and identification of axonal branches. J. Comp. Neurol. 203, 799–822 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Swadlow, H.A. Neocortical efferent neurons with very slowly conducting axons: strategies for reliable antidromic identification. J. Neurosci. Methods 79, 131–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Berezovskii, V.K., Nassi, J.J. & Born, R.T. Segregation of feedforward and feedback projections in mouse visual cortex. J. Comp. Neurol. 519, 3672–3683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Simmons, P.A., Lemmon, V. & Pearlman, A.L. Afferent and efferent connections of the striate and extrastriate visual cortex of the normal and reeler mouse. J. Comp. Neurol. 211, 295–308 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Jia, H., Rochefort, N.L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Dong, H., Wang, Q., Valkova, K., Gonchar, Y. & Burkhalter, A. Experience-dependent development of feedforward and feedback circuits between lower and higher areas of mouse visual cortex. Vision Res. 44, 3389–3400 (2004).

    Article  PubMed  Google Scholar 

  38. Molyneaux, B.J. et al. Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons. J. Neurosci. 29, 12343–12354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hata, Y., Tsumoto, T. & Stryker, M.P. Selective pruning of more active afferents when cat visual cortex is pharmacologically inhibited. Neuron 22, 375–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Brown, S.P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morishima, M. & Kawaguchi, Y. Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J. Neurosci. 26, 4394–4405 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshimura, Y., Dantzker, J. & Callaway, E.M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Bosking, W.H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allen, C.B., Celikel, T. & Feldman, D.E. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat. Neurosci. 6, 291–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, C., Dreosti, E. & Lagnado, L. Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J. Neurosci. 31, 7492–7496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hofer, S.B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14, 1045–1052 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Niell, C.M. & Stryker, M.P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, Q., Sporns, O. & Burkhalter, A. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32, 4386–4399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS  PubMed  Google Scholar 

  53. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Husson, T.R., Mallik, A.K., Zhang, J.X. & Issa, N.P. Functional imaging of primary visual cortex using flavoprotein autofluorescence. J. Neurosci. 27, 8665–8675 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Braitenberg, V. & Schüz, A. Anatomy of the Cortex: Statistics and Geometry (Springer, 1991).

  56. Kerlin, A.M., Andermann, M.L., Berezovskii, V.K. & Reid, R.C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Caiado, G. Goldey, M. Kirk, C. Mazur and D. Roumis for surgical assistance; J. Curry, A. Moffa and W. Wray for behavioral habituation of mice; S. Yurgenson for technical contributions to visual stimulation and eye-tracking software; and A. Vagodny for technical assistance. We also thank V. Berezovskii, R. Born, S. Chatterjee, M. Histed, C. Hull, A. Kerlin, W. Lee, J. Maunsell and W. Regehr for advice and discussion at all stages of the project. This work was supported by the US National Institutes of Health (R01 EY018742 and R01 EY010115) and by fellowships from the Helen Hay Whitney Foundation (L.L.G. and M.L.A.) and the Ludcke Foundation and Pierce Charitable Trust (M.L.A.).

Author information

Authors and Affiliations

Authors

Contributions

L.L.G. performed the experiments. L.L.G., M.L.A. and V.B. analyzed the data. V.B. built the experimental setup. L.L.G., M.L.A., V.B. and R.C.R. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to R Clay Reid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1839 kb)

Supplementary Movie 1

Two-photon imaging of calcium transients in axonal projections. Changes in fluorescence (dF/F at 10× speed) in response to the presentation of visual stimuli (inset, 0.5× speed) for 10 individual trials. This is from the same experiment as shown in Figure 1c,d; field of view is in area PM approximately 90 μm below the surface. Range of dF/F: −0.5 to 2.5. (AVI 14409 kb)

Supplementary Movie 2

Average time course in response to visual stimuli. Time course of changes in fluorescence (dF/F at 5× speed) in response to the presentation of 9 different visual stimuli (inset, 0.5× speed) spaced at 2 octaves (1, 4 and 15 Hz at 0.02, 0.08 and 0.32 c.p.d.). The response to each stimulus is the average of 24 presentations. Same experiment as shown in Figure 1c,d. Range of dF/F: −0.15 to 0.8. (AVI 12969 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glickfeld, L., Andermann, M., Bonin, V. et al. Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat Neurosci 16, 219–226 (2013). https://doi.org/10.1038/nn.3300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing