Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reorganization of cortical population activity imaged throughout long-term sensory deprivation

Abstract

Sensory maps are reshaped by experience. It is unknown how map plasticity occurs in vivo in functionally diverse neuronal populations because activity of the same cells has not been tracked over long time periods. Here we used repeated two-photon imaging of a genetic calcium indicator to measure whisker-evoked responsiveness of the same layer 2/3 neurons in adult mouse barrel cortex over weeks, first with whiskers intact, then during continued trimming of all but one whisker. Across the baseline period, neurons displayed heterogeneous yet stable responsiveness. During sensory deprivation, responses to trimmed whisker stimulation globally decreased, whereas responses to spared whisker stimulation increased for the least active neurons and decreased for the most active neurons. These findings suggest that recruitment of inactive, 'silent' neurons is part of a convergent redistribution of population activity underlying sensory map plasticity. Sensory-driven responsiveness is a key property controlling experience-dependent activity changes in individual neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term imaging of neuronal population activity in mouse barrel cortex.
Figure 2: Long-term functionality of YC3.60.
Figure 3: Stable response probabilities of cortical neurons under baseline conditions.
Figure 4: Flexible tuning properties over baseline days and weeks.
Figure 5: Map plasticity induced by whisker trimming.
Figure 6: Retuning of neuronal selectivity.
Figure 7: Differential changes in population activity depend on cell class.

Similar content being viewed by others

References

  1. Buonomano, D.V. & Merzenich, M.M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Feldman, D.E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simons, D.J. & Land, P.W. Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature 326, 694–697 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Petersen, C.C. The functional organization of the barrel cortex. Neuron 56, 339–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Feldman, D.E. & Brecht, M. Map plasticity in somatosensory cortex. Science 310, 810–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Fox, K. Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience 111, 799–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Diamond, M.E., Huang, W. & Ebner, F.F. Laminar comparison of somatosensory cortical plasticity. Science 265, 1885–1888 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Glazewski, S. & Fox, K. Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats. J. Neurophysiol. 75, 1714–1729 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Cheetham, C.E., Hammond, M.S., Edwards, C.E. & Finnerty, G.T. Sensory experience alters cortical connectivity and synaptic function site specifically. J. Neurosci. 27, 3456–3465 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glazewski, S., Chen, C.M., Silva, A. & Fox, K. Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex. Science 272, 421–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Oberlaender, M., Ramirez, A. & Bruno, R.M. Sensory experience restructures thalamocortical axons during adulthood. Neuron 74, 648–655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brecht, M., Roth, A. & Sakmann, B. Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J. Physiol. (Lond.) 553, 243–265 (2003).

    Article  CAS  Google Scholar 

  13. Crochet, S. & Petersen, C.C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kerr, J.N. et al. Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J. Neurosci. 27, 13316–13328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sato, T.R., Gray, N.W., Mainen, Z.F. & Svoboda, K. The functional microarchitecture of the mouse barrel cortex. PLoS Biol. 5, e189 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rothschild, G., Nelken, I. & Mizrahi, A. Functional organization and population dynamics in the mouse primary auditory cortex. Nat. Neurosci. 13, 353–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Polley, D.B., Chen-Bee, C.H. & Frostig, R.D. Two directions of plasticity in the sensory-deprived adult cortex. Neuron 24, 623–637 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Brecht, M., Schneider, M. & Manns, I.D. Silent neurons in sensorimotor cortices: implications for plasticity. in Neural Plasticity in Adult Somatic Sensory-Motor Systems (ed. Ebner, F.F.), 1–19 (CRC Press, 2005).

  19. Shoham, S., O'Connor, D.H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192, 777–784 (2006).

    Article  PubMed  Google Scholar 

  20. Jacob, V., Petreanu, L., Wright, N., Svoboda, K. & Fox, K. Regular spiking and intrinsic bursting pyramidal cells show orthogonal forms of experience-dependent plasticity in layer V of barrel cortex. Neuron 73, 391–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andermann, M.L., Kerlin, A.M. & Reid, R.C. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front Cell Neurosci 4, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Mank, M., et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5, 805–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lütcke, H. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front Neural Circuits 4, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 101, 10554–10559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Minderer, M. et al. Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator. J. Physiol. (Lond.) 590, 99–107 (2012).

    Article  CAS  Google Scholar 

  28. Yassin, L. et al. An embedded subnetwork of highly active neurons in the neocortex. Neuron 68, 1043–1050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wallace, D.J. et al. Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat. Methods 5, 797–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Clem, R.L., Celikel, T. & Barth, A.L. Ongoing in vivo experience triggers synaptic metaplasticity in the neocortex. Science 319, 101–104 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Lefort, S., Tomm, C., Floyd Sarria, J.C. & Petersen, C.C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Glazewski, S., Giese, K.P., Silva, A. & Fox, K. The role of alpha-CaMKII autophosphorylation in neocortical experience-dependent plasticity. Nat. Neurosci. 3, 911–918 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Barth, A.L. & Poulet, J.F. Experimental evidence for sparse firing in the neocortex. Trends Neurosci. 35, 345–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Crochet, S., Poulet, J.F., Kremer, Y. & Petersen, C.C. Synaptic mechanisms underlying sparse coding of active touch. Neuron 69, 1160–1175 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Yazaki-Sugiyama, Y., Kang, S., Cateau, H., Fukai, T. & Hensch, T.K. Bidirectional plasticity in fast-spiking GABA circuits by visual experience. Nature 462, 218–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Gandhi, S.P., Yanagawa, Y. & Stryker, M.P. Delayed plasticity of inhibitory neurons in developing visual cortex. Proc. Natl. Acad. Sci. USA 105, 16797–16802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hofer, S.B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14, 1045–1052 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gentet, L.J. et al. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat. Neurosci. 15, 607–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Nelson, S.B. & Turrigiano, G.G. Strength through diversity. Neuron 60, 477–482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turrigiano, G.G. & Nelson, S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Diamond, M.E., Armstrong-James, M. & Ebner, F.F. Experience-dependent plasticity in adult rat barrel cortex. Proc. Natl. Acad. Sci. USA 90, 2082–2086 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Celikel, T., Szostak, V.A. & Feldman, D.E. Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nat. Neurosci. 7, 534–541 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949).

  45. Wen, J.A. & Barth, A.L. Input-specific critical periods for experience-dependent plasticity in layer 2/3 pyramidal neurons. J. Neurosci. 31, 4456–4465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mrsic-Flogel, T.D. et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Cheetham, C.E., Hammond, M.S., McFarlane, R. & Finnerty, G.T. Altered sensory experience induces targeted rewiring of local excitatory connections in mature neocortex. J. Neurosci. 28, 9249–9260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huber, D. et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484, 473–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamada, Y. et al. Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells and cerebellar Purkinje cells. Front Cell Neurosci 5, 18 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hübener, M. & Bonhoeffer, T. Searching for engrams. Neuron 67, 363–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Mastakov, M.Y., Baer, K., Xu, R., Fitzsimons, H. & During, M.J. Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol. Ther. 3, 225–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Drew, P.J. & Feldman, D.E. Intrinsic signal imaging of deprivation-induced contraction of whisker representations in rat somatosensory cortex. Cereb. Cortex 19, 331–348 (2009).

    Article  PubMed  Google Scholar 

  53. Foeller, E., Celikel, T. & Feldman, D.E. Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex. J. Neurophysiol. 94, 4387–4400 (2005).

    Article  PubMed  Google Scholar 

  54. Chen-Bee, C.H. et al. Visualizing and quantifying evoked cortical activity assessed with intrinsic signal imaging. J. Neurosci. Methods 97, 157–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Li, B. & Acton, S.T. Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16, 2096–2106 (2007).

    Article  PubMed  Google Scholar 

  56. Jain, N. et al. Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 19, 1945–1951 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Kasper, S. Giger and D. Göckeritz for technical assistance and A. Holtmaat, B. Gähwiler, M. Schwab, M. Thallmair and V. Planchamp for comments on an earlier version of the manuscript. This work was supported by an AMBIZIONE grant from the Swiss National Science Foundation (SNSF) to D.J.M.; a postdoctoral fellowship from the German Academic Exchange Service (DAAD) to H.L.; an SNSF grant to F. Helmchen (3100A0-114624); the EU-FP7 program (PLASTICISE project 223524 to F. Helmchen, and BRAIN-I-NETS project 243914 to F. Helmchen and F. Haiss); a grant from the Swiss SystemsX.ch initiative (project 2008/2011-Neurochoice) to F. Helmchen and B.W.; and the Max Planck Society and the Fritz Thyssen Stiftung (M.T.H.).

Author information

Authors and Affiliations

Authors

Contributions

Conceived/designed the study: D.J.M., H.L., F. Helmchen; performed viral injections: D.J.M., H.L.; performed cranial window surgeries: D.J.M., F. Haiss (laboratory of B.W.); performed imaging experiments: D.J.M., H.L., K.S.; performed electrophysiology experiments: H.L., D.J.M.; produced constructs and viruses: M.T.H., S.K.; developed analysis routines: H.L.; performed analysis: H.L., D.J.M., F. Helmchen; wrote the manuscript: D.J.M., H.L., F. Helmchen.

Corresponding author

Correspondence to Fritjof Helmchen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 14212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolis, D., Lütcke, H., Schulz, K. et al. Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat Neurosci 15, 1539–1546 (2012). https://doi.org/10.1038/nn.3240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing