Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons

Abstract

Amyloid-beta (Aβ) oligomers are thought to trigger Alzheimer's disease pathophysiology. Cellular prion protein (PrPC) selectively binds oligomeric Aβ and can mediate Alzheimer's disease–related phenotypes. We examined the specificity, distribution and signaling of Aβ-PrPC complexes, seeking to understand how they might alter the function of NMDA receptors (NMDARs) in neurons. PrPC is enriched in postsynaptic densities, and Aβ-PrPC interaction leads to Fyn kinase activation. Soluble Aβ assemblies derived from the brains of individuals with Alzheimer's disease interacted with PrPC to activate Fyn. Aβ engagement of PrPC-Fyn signaling yielded phosphorylation of the NR2B subunit of NMDARs, which was coupled to an initial increase and then a loss of surface NMDARs. Aβ-induced dendritic spine loss and lactate dehydrogenase release required both PrPC and Fyn, and human familial Alzheimer's disease transgene–induced convulsive seizures did not occur in mice lacking PrPC. These results delineate an Aβ oligomer signal transduction pathway that requires PrPC and Fyn to alter synaptic function, with deleterious consequences in Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of prion protein to the postsynaptic density.
Figure 2: Aβ oligomers activate Fyn kinase.
Figure 3: Aβ species from the brains of individuals with Alzheimer's disease associate with PrPC to activate Fyn.
Figure 4: Aβo increase NR2B phosphorylation transiently via PrPC and Fyn.
Figure 5: Aβo induces NR2B surface localization, calcium signaling and toxicity via PrPC and Fyn.
Figure 6: PrPC and Fyn are required for Aβ-induced dendritic spine loss.
Figure 7: Seizures in transgenic Alzheimer's disease mice require PrPC.

Similar content being viewed by others

References

  1. Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  Google Scholar 

  2. Walsh, D.M. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  Google Scholar 

  3. Shankar, G.M. et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  Google Scholar 

  4. Lesné, S. et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  Google Scholar 

  5. Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. & Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128–1132 (2009).

    Article  Google Scholar 

  6. Zou, W.Q. et al. Amyloid-{beta}42 interacts mainly with insoluble prion protein in the alzheimer brain. J. Biol. Chem. 286, 15095–15105 (2011).

    Article  CAS  Google Scholar 

  7. Balducci, C. et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA 107, 2295–2300 (2010).

    Article  CAS  Google Scholar 

  8. Chen, S., Yadav, S.P. & Surewicz, W.K. Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role of N-terminal residues. J. Biol. Chem. 285, 26377–26383 (2010).

    Article  CAS  Google Scholar 

  9. Calella, A.M. et al. Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol. Med. 2, 306–314 (2010).

    Article  CAS  Google Scholar 

  10. Freir, D.B. et al. Interaction between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2, 336 (2011).

    Article  Google Scholar 

  11. Cisse, M. et al. Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J. Neurosci. 31, 10427–10431 (2011).

    Article  CAS  Google Scholar 

  12. Kessels, H.W., Nguyen, L.N., Nabavi, S. & Malinow, R. The prion protein as a receptor for amyloid-beta. Nature 466, E3–4 (2010).

    Article  CAS  Google Scholar 

  13. Gimbel, D.A. et al. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J. Neurosci. 30, 6367–6374 (2010).

    Article  CAS  Google Scholar 

  14. Chung, E. et al. Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an Alzheimer's disease model mouse. BMC Neurosci. 11, 130 (2010).

    Article  Google Scholar 

  15. Resenberger, U.K. et al. The cellular prion protein mediates neurotoxic signalling of beta-sheet-rich conformers independent of prion replication. EMBO J. 30, 2057–2070 (2011).

    Article  CAS  Google Scholar 

  16. Barry, A.E. et al. Alzheimer's disease brain–derived amyloid-beta–mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. 31, 7259–7263 (2011).

    Article  CAS  Google Scholar 

  17. Bate, C. & Williams, A. Amyloid-beta–induced synapse damage is mediated via cross-linkage of cellular prion proteins. J. Biol. Chem. 286, 37955–37963 (2011).

    Article  CAS  Google Scholar 

  18. You, H. et al. Abeta neurotoxicity depends on interactions between copper ions, prion protein and N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 109, 1737–1742 (2012).

    Article  CAS  Google Scholar 

  19. Alier, K., Ma, L., Yang, J., Westaway, D. & Jhamandas, J.H. Abeta inhibition of ionic conductance in mouse basal forebrain neurons is dependent upon the cellular prion protein PrPC. J. Neurosci. 31, 16292–16297 (2011).

    Article  CAS  Google Scholar 

  20. Kudo, W. et al. Cellular prion protein is essential for oligomeric amyloid-beta–induced neuronal cell death. Hum. Mol. Genet. 21, 1138–1144 (2012).

    Article  CAS  Google Scholar 

  21. Shankar, G.M. et al. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor–dependent signaling pathway. J. Neurosci. 27, 2866–2875 (2007).

    Article  CAS  Google Scholar 

  22. Lacor, P.N. et al. Abeta oligomer-induced aberrations in synapse composition, shape and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27, 796–807 (2007).

    Article  CAS  Google Scholar 

  23. Snyder, E.M. et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8, 1051–1058 (2005).

    Article  CAS  Google Scholar 

  24. Pantera, B. et al. PrPc activation induces neurite outgrowth and differentiation in PC12 cells: role for caveolin-1 in the signal transduction pathway. J. Neurochem. 110, 194–207 (2009).

    Article  CAS  Google Scholar 

  25. Mouillet-Richard, S. et al. Cellular prion protein signaling in serotonergic neuronal cells. Ann. NY Acad. Sci. 1096, 106–119 (2007).

    Article  CAS  Google Scholar 

  26. Williamson, R., Usardi, A., Hanger, D.P. & Anderton, B.H. Membrane-bound beta-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J. 22, 1552–1559 (2008).

    Article  CAS  Google Scholar 

  27. Málaga-Trillo, E. et al. Regulation of embryonic cell adhesion by the prion protein. PLoS Biol. 7, e55 (2009).

    Article  Google Scholar 

  28. Bizat, N. et al. Neuron dysfunction is induced by prion protein with an insertional mutation via a Fyn kinase and reversed by sirtuin activation in Caenorhabditis elegans. J. Neurosci. 30, 5394–5403 (2010).

    Article  CAS  Google Scholar 

  29. Suzuki, T. & Okumura-Noji, K. NMDA receptor subunits epsilon 1 (NR2A) and epsilon 2 (NR2B) are substrates for Fyn in the postsynaptic density fraction isolated from the rat brain. Biochem. Biophys. Res. Commun. 216, 582–588 (1995).

    Article  CAS  Google Scholar 

  30. Grant, S.G. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).

    Article  CAS  Google Scholar 

  31. Nakazawa, T. et al. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 276, 693–699 (2001).

    Article  CAS  Google Scholar 

  32. Chin, J. et al. Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 25, 9694–9703 (2005).

    Article  CAS  Google Scholar 

  33. Renner, M. et al. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 66, 739–754 (2010).

    Article  CAS  Google Scholar 

  34. Collins, M.O. et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J. Neurochem. 97 Suppl 1, 16–23 (2006).

    Article  CAS  Google Scholar 

  35. Stuermer, C.A. et al. PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J. 18, 1731–1733 (2004).

    Article  CAS  Google Scholar 

  36. Salter, M.W. & Kalia, L.V. Src kinases: a hub for NMDA receptor regulation. Nat. Rev. Neurosci. 5, 317–328 (2004).

    Article  CAS  Google Scholar 

  37. Zhang, Y. et al. Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer's disease mouse model. Proc. Natl. Acad. Sci. USA 107, 19014–19019 (2010).

    Article  CAS  Google Scholar 

  38. Prybylowski, K. et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47, 845–857 (2005).

    Article  CAS  Google Scholar 

  39. Chen, P., Gu, Z., Liu, W. & Yan, Z. Glycogen synthase kinase 3 regulates N-methyl-D-aspartate receptor channel trafficking and function in cortical neurons. Mol. Pharmacol. 72, 40–51 (2007).

    Article  CAS  Google Scholar 

  40. Scheff, S.W., DeKosky, S.T. & Price, D.A. Quantitative assessment of cortical synaptic density in Alzheimer's disease. Neurobiol. Aging 11, 29–37 (1990).

    Article  CAS  Google Scholar 

  41. Palop, J.J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55, 697–711 (2007).

    Article  CAS  Google Scholar 

  42. Minkeviciene, R. et al. Amyloid beta–induced neuronal hyperexcitability triggers progressive epilepsy. J. Neurosci. 29, 3453–3462 (2009).

    Article  CAS  Google Scholar 

  43. McDonald, J.M. et al. The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain 133, 1328–1341 (2010).

    Article  Google Scholar 

  44. Steinerman, J.R. et al. Distinct pools of beta-amyloid in Alzheimer disease–affected brain: a clinicopathologic study. Arch. Neurol. 65, 906–912 (2008).

    Article  Google Scholar 

  45. Kuo, Y.M. et al. Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271, 4077–4081 (1996).

    Article  CAS  Google Scholar 

  46. Peng, J. et al. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003–21011 (2004).

    Article  CAS  Google Scholar 

  47. Yoshimura, Y. et al. Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J. Neurochem. 88, 759–768 (2004).

    Article  CAS  Google Scholar 

  48. Li, S. et al. Soluble A{beta} oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci. 31, 6627–6638 (2011).

    Article  CAS  Google Scholar 

  49. Kojima, N., Ishibashi, H., Obata, K. & Kandel, E.R. Higher seizure susceptibility and enhanced tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit 2B in fyn transgenic mice. Learn. Mem. 5, 429–445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ittner, L.M. et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    Article  CAS  Google Scholar 

  51. Stein, P.L., Lee, H.M., Rich, S. & Soriano, P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741–750 (1992).

    Article  CAS  Google Scholar 

  52. Zahn, R., von Schroetter, C. & Wuthrich, K. Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett. 417, 400–404 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.B.N. is an Ellison Medical Foundation American Federation for Aging Research Postdoctoral Fellow and S.M.S. is a member of the Kavli Institute for Neuroscience at Yale University. We acknowledge support from the US National Institutes of Health (R01AG034924, R37NS033020, R01NS074319 and P30DA018343), the Falk Medical Research Trust and the Alzheimer's Association (S.M.S.), and from the US National Institutes of Health (R01NS47433 and R01NS073502; T.W.).

Author information

Authors and Affiliations

Authors

Contributions

J.W.U., H.B.N., J.K.H., M.A.K., M.S., A.V., E.C.G. and S.M.S. designed various aspects of the research. J.W.U., H.B.N., J.K.H., M.S. and E.C.G. performed the research. J.W.U., H.B.N., J.K.H., M.S., T.W., E.C.G. and S.M.S. analyzed various parts of the data and wrote the paper.

Corresponding author

Correspondence to Stephen M Strittmatter.

Ethics declarations

Competing interests

S.M.S. is a co-founder of Axerion Therapeutics, which seeks to develop NgR- and PrP-based therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 28592 kb)

Supplementary Movie 1

Example of NMDA-induced intracellular calcium signal. (MOV 28335 kb)

Supplementary Movie 2

Example of three-dimensional reconstruction of images of dendritic spines. (MOV 4446 kb)

Supplementary Movie 3

Example of APP/PSen Transgenic Mouse Seizure. (WMV 10234 kb)

Supplementary Movie 4

Second Example of APP/PSen Transgenic Mouse Seizure. (WMV 9450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Um, J., Nygaard, H., Heiss, J. et al. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15, 1227–1235 (2012). https://doi.org/10.1038/nn.3178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing