Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Dense representation of natural odorants in the mouse olfactory bulb

Abstract

In mammals, odorant molecules are thought to activate only a few glomeruli, leading to the hypothesis that odor representation in the olfactory bulb is sparse. However, the studies supporting this model used anesthetized animals or monomolecular odorants at limited concentration ranges. Using optical imaging and two-photon microscopy, we found that natural odorants at their native concentrations could elicit dense representations in the olfactory bulb. Both anesthesia and odorant concentration were found to modulate the representation density of natural odorants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic optical signal imaging of glomerular-evoked activity in awake mice.
Figure 2: Dense representation of natural stimuli in the olfactory bulb of awake mice.
Figure 3: Gas anesthesia reversibly suppresses odorant-evoked response.

Similar content being viewed by others

References

  1. Abraham, N.M. et al. Neuron 44, 865–876 (2004).

    CAS  Google Scholar 

  2. Bathellier, B., Van De Ville, D., Blu, T., Unser, M. & Carleton, A. Neuroimage 34, 1020–1035 (2007).

    Article  Google Scholar 

  3. Bathellier, B., Buhl, D.L., Accolla, R. & Carleton, A. Neuron 57, 586–598 (2008).

    Article  CAS  Google Scholar 

  4. Belluscio, L. & Katz, L.C. J. Neurosci. 21, 2113–2122 (2001).

    Article  CAS  Google Scholar 

  5. Bozza, T., McGann, J.P., Mombaerts, P. & Wachowiak, M. Neuron 42, 9–21 (2004).

    Article  CAS  Google Scholar 

  6. Meister, M. & Bonhoeffer, T. J. Neurosci. 21, 1351–1360 (2001).

    Article  CAS  Google Scholar 

  7. Rubin, B.D. & Katz, L.C. Neuron 23, 499–511 (1999).

    Article  CAS  Google Scholar 

  8. Spors, H. & Grinvald, A. Neuron 34, 301–315 (2002).

    Article  CAS  Google Scholar 

  9. Uchida, N., Takahashi, Y.K., Tanifuji, M. & Mori, K. Nat. Neurosci. 3, 1035–1043 (2000).

    Article  CAS  Google Scholar 

  10. Wachowiak, M. & Cohen, L.B. Neuron 32, 723–735 (2001).

    Article  CAS  Google Scholar 

  11. Fried, H.U., Fuss, S.H. & Korsching, S.I. Proc. Natl. Acad. Sci. USA 99, 3222–3227 (2002).

    Article  CAS  Google Scholar 

  12. Lin, D.Y., Shea, S.D. & Katz, L.C. Neuron 50, 937–949 (2006).

    Article  CAS  Google Scholar 

  13. Fantana, A.L., Soucy, E.R. & Meister, M. Neuron 59, 802–814 (2008).

    Article  CAS  Google Scholar 

  14. Potter, S.M. et al. J. Neurosci. 21, 9713–9723 (2001).

    Article  CAS  Google Scholar 

  15. Davison, I.G. & Ehlers, M.D. Neuron 70, 82–94 (2011).

    Article  CAS  Google Scholar 

  16. Wachowiak, M. & Cohen, L.B. J. Neurophysiol. 89, 1623–1639 (2003).

    Article  Google Scholar 

  17. Ressler, K.J., Sullivan, S.L. & Buck, L.B. Cell 79, 1245–1255 (1994).

    Article  CAS  Google Scholar 

  18. Vassar, R. et al. Cell 79, 981–991 (1994).

    Article  CAS  Google Scholar 

  19. Xu, F. et al. Proc. Natl. Acad. Sci. USA 100, 11029–11034 (2003).

    Article  CAS  Google Scholar 

  20. Igarashi, K.M. & Mori, K. J. Neurophysiol. 93, 1007–1019 (2005).

    Article  CAS  Google Scholar 

  21. Johnson, B.A. & Leon, M. J. Comp. Neurol. 503, 1–34 (2007).

    Article  CAS  Google Scholar 

  22. Johnson, B.A., Ong, J. & Leon, M. J. Comp. Neurol. 518, 1542–1555 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Rodriguez for kindly providing the Omp-GFP mice. We thank I. Rodriguez, A. Holtmaat, S. Simon, M. Patterson and members of the Carleton laboratory for helpful discussions and comments on the manuscript. This work was supported by the Swiss National Science Foundation (SNF professor grant number PP0033_119169 and National Competence Center in Research “SYNAPSY”), the University of Geneva, the European Research Council (contract number ERC-2009-StG-243344-NEUROCHEMS), the Novartis foundation for medical research, the Leenaards foundation and the European Molecular Biology Organization (young investigator program).

Author information

Authors and Affiliations

Authors

Contributions

A.C., R.V., K.B., O.G. and J.B. carried out the study conceptualization and performed experiments or analysis. A.C., R.V. and O.G. wrote and edited the manuscript with comments from J.B. and K.B.

Corresponding author

Correspondence to Alan Carleton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincis, R., Gschwend, O., Bhaukaurally, K. et al. Dense representation of natural odorants in the mouse olfactory bulb. Nat Neurosci 15, 537–539 (2012). https://doi.org/10.1038/nn.3057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing