Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance

Abstract

Endocannabinoids (eCBs) regulate neuronal activity in the dorso-lateral striatum (DLS), a brain region that is involved in habitual behaviors. How synaptic eCB signaling contributes to habitual behaviors under physiological and pathological conditions remains unclear. Using a mouse model of cannabinoid tolerance, we found that persistent activation of the eCB pathway impaired eCB-mediated long-term depression (LTD) and synaptic depotentiation in the DLS. The loss of eCB LTD, occurring preferentially at cortical connections to striatopallidal neurons, was associated with a shift in behavioral control from goal-directed action to habitual responding. eCB LTD and behavioral alterations were rescued by in vivo modulation of small-conductance calcium activated potassium channel (SK channel) activity in the DLS, which potentiates eCB signaling. Our results reveal a direct relationship between drug tolerance and changes in control of instrumental performance by establishing a central role for eCB LTD in habit expression. In addition, SK channels emerge as molecular targets to fine tune the eCB pathway under pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cannabinoid tolerance abolishes eCB LTD in the DLS.
Figure 2: STDP at corticostriatal afferents on D2 MSNs.
Figure 3: HFS LTD in the DMS.
Figure 4: Synaptic depotentiation in the DLS of THC tolerant and naive mice.
Figure 5: SK channels are functionally expressed in the MSNs of the DLS where they modulate eCB LTD.
Figure 6: SK channel and mGluR5 modulation of synaptic depotentiation in the DLS.
Figure 7: Ex vivo and in vivo inhibition of SK channels rescues striatal eCB LTD in THC-tolerant mice.
Figure 8: In vivo modulation of SK channels in the DLS rescues goal-directed behavior in THC-tolerant mice.

Similar content being viewed by others

References

  1. Maldonado, R. The neurobiology of addiction. J. Neural Transm. Suppl. 66, 1–14 (2003).

    CAS  Google Scholar 

  2. Centonze, D. et al. Chronic cocaine prevents depotentiation at corticostriatal synapses. Biol. Psychiatry 60, 436–443 (2006).

    Article  CAS  Google Scholar 

  3. Hoffman, A.F., Oz, M., Caulder, T. & Lupica, C.R. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci. 23, 4815–4820 (2003).

    Article  CAS  Google Scholar 

  4. Mato, S. et al. A single in-vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat. Neurosci. 7, 585–586 (2004).

    Article  CAS  Google Scholar 

  5. Mato, S., Robbe, D., Puente, N., Grandes, P. & Manzoni, O.J. Presynaptic homeostatic plasticity rescues long-term depression after chronic Δ9-tetrahydrocannabinol exposure. J. Neurosci. 25, 11619–11627 (2005).

    Article  CAS  Google Scholar 

  6. Tonini, R. et al. ERK-dependent modulation of cerebellar synaptic plasticity after chronic Δ9-tetrahydrocannabinol exposure. J. Neurosci. 26, 5810–5818 (2006).

    Article  CAS  Google Scholar 

  7. Maldonado, R. & Rodriguez, F. Cannabinoid addiction: behavioral models and neural correlates. J. Neurosci. 22, 3326–3331 (2002).

    Article  CAS  Google Scholar 

  8. Chaperon, F. & Thiebot, M.H. Behavioral effects of cannabinoid agents in animals. Crit. Rev. Neurobiol. 13, 243–281 (1999).

    Article  CAS  Google Scholar 

  9. Rubino, T., Forlani, G., Vigano, D., Zippel, R. & Parolaro, D. Ras/ERK signaling in cannabinoid tolerance: from behavior to cellular aspects. J. Neurochem. 93, 984–991 (2005).

    Article  CAS  Google Scholar 

  10. Surmeier, D.J., Plotkin, J. & Shen, W. Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr. Opin. Neurobiol. 19, 621–628 (2009).

    Article  CAS  Google Scholar 

  11. Yin, H.H., Knowlton, B.J. & Balleine, B.W. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19, 181–189 (2004).

    Article  Google Scholar 

  12. Yin, H.H., Ostlund, S.B., Knowlton, B.J. & Balleine, B.W. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22, 513–523 (2005).

    Article  Google Scholar 

  13. Belin, D. & Everitt, B.J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008).

    Article  CAS  Google Scholar 

  14. Hilário, M.R. & Costa, R.M. High on habits. Front Neurosci 2, 208–217 (2008).

    Article  Google Scholar 

  15. Lovinger, D.M. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58, 951–961 (2010).

    Article  CAS  Google Scholar 

  16. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    Article  CAS  Google Scholar 

  17. Herkenham, M. et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11, 563–583 (1991).

    Article  CAS  Google Scholar 

  18. Hilário, M.R., Clouse, E., Yin, H.H. & Costa, R.M. Endocannabinoid signaling is critical for habit formation. Front. Integr. Neurosci. 1, 6 (2007).

    Article  Google Scholar 

  19. Calabresi, P., Maj, R., Pisani, A., Mercuri, N.B. & Bernardi, G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12, 4224–4233 (1992).

    Article  CAS  Google Scholar 

  20. Gerdeman, G.L., Ronesi, J. & Lovinger, D.M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 5, 446–451 (2002).

    Article  CAS  Google Scholar 

  21. Kreitzer, A.C. & Malenka, R.C. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J. Neurosci. 25, 10537–10545 (2005).

    Article  CAS  Google Scholar 

  22. Ronesi, J. & Lovinger, D.M. Induction of striatal long-term synaptic depression by moderate frequency activation of cortical afferents in rat. J. Physiol. (Lond.) 562, 245–256 (2005).

    Article  CAS  Google Scholar 

  23. Wang, Z. et al. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50, 443–452 (2006).

    Article  CAS  Google Scholar 

  24. Martin, B.R., Sim-Selley, L.J. & Selley, D.E. Signaling pathways involved in the development of cannabinoid tolerance. Trends Pharmacol. Sci. 25, 325–330 (2004).

    Article  CAS  Google Scholar 

  25. Kreitzer, A.C. & Malenka, R.C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007).

    Article  CAS  Google Scholar 

  26. Kreitzer, A.C. Physiology and pharmacology of striatal neurons. Annu. Rev. Neurosci. 32, 127–147 (2009).

    Article  CAS  Google Scholar 

  27. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    Article  CAS  Google Scholar 

  28. Fino, E. et al. Distinct coincidence detectors govern the corticostriatal spike timing–dependent plasticity. J. Physiol. (Lond.) 588, 3045–3062 (2010).

    Article  CAS  Google Scholar 

  29. Surmeier, D.J., Song, W.J. & Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579–6591 (1996).

    Article  CAS  Google Scholar 

  30. Picconi, B. et al. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134, 375–387 (2011).

    Article  Google Scholar 

  31. Grueter, B.A., Brasnjo, G. & Malenka, R.C. Postsynaptic TRPV1 triggers cell type–specific long-term depression in the nucleus accumbens. Nat. Neurosci. 13, 1519–1525 (2010).

    Article  CAS  Google Scholar 

  32. Szallasi, A., Cortright, D.N., Blum, C.A. & Eid, S.R. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov. 6, 357–372 (2007).

    Article  CAS  Google Scholar 

  33. Picconi, B. et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia. Nat. Neurosci. 6, 501–506 (2003).

    Article  CAS  Google Scholar 

  34. Uchigashima, M. et al. Subcellular arrangement of molecules for 2-arachidonoyl glycerol–mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J. Neurosci. 27, 3663–3676 (2007).

    Article  CAS  Google Scholar 

  35. Adermark, L. & Lovinger, D.M. Combined activation of L-type Ca2+ channels and synaptic transmission is sufficient to induce striatal long-term depression. J. Neurosci. 27, 6781–6787 (2007).

    Article  CAS  Google Scholar 

  36. Stocker, M. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5, 758–770 (2004).

    Article  CAS  Google Scholar 

  37. Ngo-Anh, T.J. et al. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat. Neurosci. 8, 642–649 (2005).

    Article  CAS  Google Scholar 

  38. Higley, M.J. & Sabatini, B.L. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat. Neurosci. 13, 958–966 (2010).

    Article  CAS  Google Scholar 

  39. Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81 (2003).

    Article  CAS  Google Scholar 

  40. Quinn, J.J., Hitchcott, P.K., Umeda, E.A., Arnold, A.P. & Taylor, J.R. Sex chromosome complement regulates habit formation. Nat. Neurosci. 10, 1398–1400 (2007).

    Article  CAS  Google Scholar 

  41. Yin, H.H. & Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).

    Article  CAS  Google Scholar 

  42. Derusso, A.L. et al. Instrumental uncertainty as a determinant of behavior under interval schedules of reinforcement. Front. Integr. Neurosci. 4, 17 (2010).

    Article  Google Scholar 

  43. Katona, I. & Freund, T.F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 14, 923–930 (2008).

    Article  CAS  Google Scholar 

  44. Gulyas, A.I. et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20, 441–458 (2004).

    Article  CAS  Google Scholar 

  45. Yin, H.H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12, 333–341 (2009).

    Article  CAS  Google Scholar 

  46. Thorn, C.A., Atallah, H., Howe, M. & Graybiel, A.M. Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66, 781–795 (2010).

    Article  CAS  Google Scholar 

  47. Venance, L. & Glowinski, J. Heterogeneity of spike frequency adaptation among medium spiny neurones from the rat striatum. Neuroscience 122, 77–92 (2003).

    Article  CAS  Google Scholar 

  48. Fino, E., Glowinski, J. & Venance, L. Bidirectional activity-dependent plasticity at corticostriatal synapses. J. Neurosci. 25, 11279–11287 (2005).

    Article  CAS  Google Scholar 

  49. Tkatch, T., Baranauskas, G. & Surmeier, D.J. Kv4.2 mRNA abundance and A-type K+ current amplitude are linearly related in basal ganglia and basal forebrain neurons. J. Neurosci. 20, 579–588 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to V. Di Marzo, L. Gasparini and F. Papaleo for critical reading of the manuscript, and D. Piomelli for helpful discussion of the results. This research was supported by the Istituto Italiano di Tecnologia. P.P. acknowledges support from the Medical Research Council (CEG G0100066).

Author information

Authors and Affiliations

Authors

Contributions

C.N. conducted the majority of the electrophysiological experiments. B.G. designed and performed the behavioral experiments. M.C. and P.B. obtained the preliminary electrophysiological data on the effect of THC tolerance on striatal synaptic plasticity. T.T. carried out the PCR profiling of MSNs. T.R. and D.P. performed the autoradiographic studies. M.T. performed the histochemical experiments. F.B. supervised B.G. and contributed to data discussion. P.P. contributed to data discussion and interpretation and wrote the manuscript. R.T. supervised the project, directed and performed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Raffaella Tonini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Results and Supplementary Discussion (PDF 1654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazzaro, C., Greco, B., Cerovic, M. et al. SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance. Nat Neurosci 15, 284–293 (2012). https://doi.org/10.1038/nn.3022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing