Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Leptin regulates the reward value of nutrient

Abstract

We developed an assay for quantifying the reward value of nutrient and used it to analyze the effects of metabolic state and leptin. In this assay, mice chose between two sippers, one of which dispensed water and was coupled to optogenetic activation of dopaminergic (DA) neurons and the other of which dispensed natural or artificial sweeteners. This assay measured the reward value of sweeteners relative to lick-induced optogenetic activation of DA neurons. Mice preferred optogenetic stimulation of DA neurons to sucralose, but not to sucrose. However, the mice preferred sucralose plus optogenetic stimulation versus sucrose. We found that food restriction increased the value of sucrose relative to sucralose plus optogenetic stimulation, and that leptin decreased it. Our data suggest that leptin suppresses the ability of sucrose to drive taste-independent DA neuronal activation and provide new insights into the mechanism of leptin's effects on food intake.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optogenetic activation of DA neurons.
Figure 2: The optogenetic licking assay drives voluntary ingestion in nondeprived mice.
Figure 3: Sucrose has higher value than sucralose.
Figure 4: Optogenetic activation of DA neurons reverses the preference of sucrose over sucralose and elicits activation of DA neurons.
Figure 5: Fasting increases the value of sucrose, and leptin reverses this effect.
Figure 6: Leptin corrects the fasting-induced increase in the value of sucrose via the CNS.
Figure 7: Leptin supresses post-ingestive sucrose-induced DA neuron activation.

Similar content being viewed by others

References

  1. Cameron, J.D. et al. The effects of prolonged caloric restriction leading to weight-loss on food hedonics and reinforcement. Physiol. Behav. 94, 474–480 (2008).

    Article  CAS  Google Scholar 

  2. Epstein, L.H. et al. Effects of deprivation on hedonics and reinforcing value of food. Physiol. Behav. 78, 221–227 (2003).

    Article  CAS  Google Scholar 

  3. Ren, X. et al. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 30, 8012–8023 (2010).

    Article  CAS  Google Scholar 

  4. Rozin, P. Acquisition of food preferences and attitudes to food. Int. J. Obes. 4, 356–363 (1980).

    CAS  PubMed  Google Scholar 

  5. Umabiki, M. et al. The improvement of sweet taste sensitivity with decrease in serum leptin levels during weight loss in obese females. Tohoku J. Exp. Med. 220, 267–271 (2010).

    Article  CAS  Google Scholar 

  6. Berridge, K.C. Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci. Biobehav. Rev. 24, 173–198 (2000).

    Article  CAS  Google Scholar 

  7. Glimcher, P.W. & Rustichini, A. Neuroeconomics: the consilience of brain and decision. Science 306, 447–452 (2004).

    Article  CAS  Google Scholar 

  8. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  9. Padoa-Schioppa, C. & Assad, J.A. The representation of economic value in the orbitofrontal cortex is invariant for changes of menu. Nat. Neurosci. 11, 95–102 (2008).

    Article  CAS  Google Scholar 

  10. Roesch, M.R., Calu, D.J. & Schoenbaum, G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci. 10, 1615–1624 (2007).

    Article  CAS  Google Scholar 

  11. Friedman, J.M. Modern science versus the stigma of obesity. Nat. Med. 10, 563–569 (2004).

    Article  CAS  Google Scholar 

  12. Farooqi, I.S. et al. Leptin regulates striatal regions and human eating behavior. Science 317, 1355 (2007).

    Article  CAS  Google Scholar 

  13. Fulton, S. et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51, 811–822 (2006).

    Article  CAS  Google Scholar 

  14. Hommel, J.D. et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810 (2006).

    Article  CAS  Google Scholar 

  15. Zhang, F. et al. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  Google Scholar 

  16. Tsai, H. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  Google Scholar 

  17. Lee, J.H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2011).

    Article  Google Scholar 

  18. de Araujo, I.E. et al. Food reward in the absence of taste receptor signaling. Neuron 57, 930–941 (2008).

    Article  CAS  Google Scholar 

  19. Shigemura, N. et al. Expression of leptin receptor (Ob-R) isoforms and signal transducers and activators of transcription (STATs) mRNAs in the mouse taste buds. Arch. Histol. Cytol. 66, 253–260 (2003).

    Article  CAS  Google Scholar 

  20. Sclafani, A. Post-ingestive positive controls of ingestive behavior. Appetite 36, 79–83 (2001).

    Article  CAS  Google Scholar 

  21. Figlewicz, D.P. et al. Leptin reverses sucrose-conditioned place preference in food-restricted rats. Physiol. Behav. 73, 229–234 (2001).

    Article  CAS  Google Scholar 

  22. Hodos, W. Progressive ratio as a measure of reward strength. Science 134, 943–944 (1961).

    Article  CAS  Google Scholar 

  23. Berridge, K.C. 'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders. Physiol. Behav. 97, 537–550 (2009).

    Article  CAS  Google Scholar 

  24. Finlayson, G., King, N. & Blundell, J.E. Liking vs. wanting food: importance for human appetite control and weight regulation. Neurosci. Biobehav. Rev. 31, 987–1002 (2007).

    Article  Google Scholar 

  25. Berridge, K.C. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl). 191, 391–431 (2007).

    Article  CAS  Google Scholar 

  26. Wise, R.A. Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox. Res. 14, 169–183 (2008).

    Article  Google Scholar 

  27. Fulton, S., Woodside, B. & Shizgal, P. Modulation of brain reward circuitry by leptin. Science 287, 125–128 (2000).

    Article  CAS  Google Scholar 

  28. Fulton, S. et al. Food restriction and leptin impact brain reward circuitry in lean and obese Zucker rats. Behav Brain Res. 155, 319–329 (2004).

    Article  CAS  Google Scholar 

  29. Figlewicz, D.P. et al. Intraventricular insulin and leptin decrease sucrose self-administration in rats. Physiol. Behav. 89, 611–616 (2006).

    Article  CAS  Google Scholar 

  30. Lydall, E.S., Gilmour, G. & Dwyer, D.M. Analysis of licking microstructure provides no evidence for a reduction in reward value following acute or sub-chronic phencyclidine administration. Psychopharmacology (Berl). 209, 153–162 (2010).

    Article  CAS  Google Scholar 

  31. Glimcher, P.W. & Rustichini, A. Neuroeconomics: the consilience of brain and decision. Science 306, 447–452 (2004).

    Article  CAS  Google Scholar 

  32. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat. Rev. Neurosci. 6, 363–375 (2005).

    Article  CAS  Google Scholar 

  33. Ventura, E.E., Davis, J.N. & Goran, M.I. Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. Obesity (Silver Spring) 19, 687 (2010).

    Google Scholar 

  34. Eric Walters, D. et al. Sweeteners: Discovery, Molecular Design, and Chemoreception (Oxford University Press, 1991).

  35. Bukowiecki, L.J. et al. Effects of sucrose, caffeine, and cola beverages on obesity, cold resistance, and adipose tissue cellularity. Am. J. Physiol. 244, R500–R507 (1983).

    CAS  PubMed  Google Scholar 

  36. Glencoe, C. Glencoe Chemistry: Matter and Change (McGraw Hill, New York, 2002).

  37. Servant, G. et al. Positive allosteric modulators of the human sweet taste receptor enhance sweet taste. Proc. Natl. Acad. Sci. USA 107, 4746–4751 (2010).

    Article  CAS  Google Scholar 

  38. Nie, Y. et al. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Curr. Biol. 15, 1948–1952 (2005).

    Article  CAS  Google Scholar 

  39. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    Article  CAS  Google Scholar 

  40. Weijnen, J.A. Lick sensors as tools in behavioral and neuroscience research. Physiol. Behav. 46, 923–928 (1989).

    Article  CAS  Google Scholar 

  41. Bartoshuk, L.M. Bitter taste of saccharin related to the genetic ability to taste the bitter substance 6-n-propylthiouracil. Science 205, 934–935 (1979).

    Article  CAS  Google Scholar 

  42. Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. USA 99, 4692–4696 (2002).

    Article  CAS  Google Scholar 

  43. Bellisle, F. & Drewnowski, A. Intense sweeteners, energy intake and the control of body weight. Eur. J. Clin. Nutr. 61, 691–700 (2007).

    Article  CAS  Google Scholar 

  44. Haley, S. Sweetener Consumption in the United States (Electronic Outlook Report from the Economic Research Service) 1–19 (USDA, 2005).

  45. Lewis, S.R. et al. Genetic variance contributes to ingestive processes: a survey of 2-deoxy-D-glucose-induced feeding in eleven inbred mouse strains. Physiol. Behav. 87, 595–601 (2006).

    Article  CAS  Google Scholar 

  46. Abizaid, A. et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 116, 3229–3239 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Pestilli for helping with the bootstrap analysis. We thank the Klarman Family Foundation for Eating Disorders (KFFfED) for supporting this work. A.I.D. was supported by Fundação para a Ciência e Tecnologia (Portugal) and KFFfED. J.V. was supported by KFFfED. X.R. and I.E.d.A. were supported by US National Institutes of Health grant DC009997 to I.E.d.A. F.Z., V.G. and K.D. were supported by the US National Institutes of Health (grant MH075957), the Gatsby Foundation and Defense Advanced Research Projects Agency. H.U.V. was partially supported by the Nancy M. and Samuel C. Fleming Research Scholar Award in Intercampus Collaborations.

Author information

Authors and Affiliations

Authors

Contributions

A.I.D. contributed to all data. J.V. collected behavioral data. H.U.V. collected and analyzed the ofMRI data and generated the graphs and statistical parametric maps in Figure 1c,d. F.Z., V.G. and K.D. provided viral vectors. X.R. and I.E.d.A. contributed to Figure 2a. A.D., I.E.d.A. and J.F. wrote the manuscript.

Corresponding author

Correspondence to Jeffrey Friedman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 5462 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domingos, A., Vaynshteyn, J., Voss, H. et al. Leptin regulates the reward value of nutrient. Nat Neurosci 14, 1562–1568 (2011). https://doi.org/10.1038/nn.2977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing