Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Na+/Ca2+ exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response

Abstract

Sensory perception requires accurate encoding of stimulus information by sensory receptor cells. We identified NCKX4, a potassium-dependent Na+/Ca2+ exchanger, as being necessary for rapid response termination and proper adaptation of vertebrate olfactory sensory neurons (OSNs). Nckx4−/− (also known as Slc24a4) mouse OSNs displayed substantially prolonged responses and stronger adaptation. Single-cell electrophysiological analyses revealed that the majority of Na+-dependent Ca2+ exchange in OSNs relevant to sensory transduction is a result of NCKX4 and that Nckx4−/− mouse OSNs are deficient in encoding action potentials on repeated stimulation. Olfactory-specific Nckx4−/− mice had lower body weights and a reduced ability to locate an odorous source. These results establish the role of NCKX4 in shaping olfactory responses and suggest that rapid response termination and proper adaptation of peripheral sensory receptor cells tune the sensory system for optimal perception.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Nckx4 in the olfactory epithelium and the effects of NCKX4 loss on other olfactory transduction components.
Figure 2: EOG analysis of Nckx4−/− mice.
Figure 3: Single-cell analysis of Na+/Ca2+ exchanger-dependent response termination.
Figure 4: Analysis of adaptation of Nckx4−/− OSNs.
Figure 5: Single-cell analysis of action potential generation in Nckx4−/− OSNs.
Figure 6: Effects of NCKX4 loss on olfactory-mediated behaviors.

Similar content being viewed by others

References

  1. Fain, G.L., Matthews, H.R., Cornwall, M.C. & Koutalos, Y. Adaptation in vertebrate photoreceptors. Physiol. Rev. 81, 117–151 (2001).

    Article  CAS  Google Scholar 

  2. Kleene, S.J. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem. Senses 33, 839–859 (2008).

    Article  CAS  Google Scholar 

  3. Kaupp, U.B. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat. Rev. Neurosci. 11, 188–200 (2010).

    Article  CAS  Google Scholar 

  4. Reisert, J., Lai, J., Yau, K.W. & Bradley, J. Mechanism of the excitatory Cl response in mouse olfactory receptor neurons. Neuron 45, 553–561 (2005).

    Article  CAS  Google Scholar 

  5. Lowe, G. & Gold, G.H. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366, 283–286 (1993).

    Article  CAS  Google Scholar 

  6. Kleene, S.J. High-gain, low-noise amplification in olfactory transduction. Biophys. J. 73, 1110–1117 (1997).

    Article  CAS  Google Scholar 

  7. Zufall, F. & Leinders-Zufall, T. The cellular and molecular basis of odor adaptation. Chem. Senses 25, 473–481 (2000).

    Article  CAS  Google Scholar 

  8. Menco, B.P. Ciliated and microvillous structures of rat olfactory and nasal respiratory epithelia. A study using ultra-rapid cryo-fixation followed by freeze-substitution or freeze-etching. Cell Tissue Res. 235, 225–241 (1984).

    Article  CAS  Google Scholar 

  9. Pyrski, M. et al. Sodium/calcium exchanger expression in the mouse and rat olfactory systems. J. Comp. Neurol. 501, 944–958 (2007).

    Article  CAS  Google Scholar 

  10. Lytton, J. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem. J. 406, 365–382 (2007).

    Article  CAS  Google Scholar 

  11. Schnetkamp, P.P. Calcium homeostasis in vertebrate retinal rod outer segments. Cell Calcium 18, 322–330 (1995).

    Article  CAS  Google Scholar 

  12. Wang, T. et al. Light activation, adaptation, and cell survival functions of the Na+/Ca2+ exchanger CalX. Neuron 45, 367–378 (2005).

    Article  CAS  Google Scholar 

  13. Antolin, S. & Matthews, H.R. The effect of external sodium concentration on sodium-calcium exchange in frog olfactory receptor cells. J. Physiol. (Lond.) 581, 495–503 (2007).

    Article  Google Scholar 

  14. Reisert, J. & Matthews, H.R. Na+-dependent Ca2+ extrusion governs response recovery in frog olfactory receptor cells. J. Gen. Physiol. 112, 529–535 (1998).

    Article  CAS  Google Scholar 

  15. Noé, J., Tareilus, E., Boekhoff, I. & Breer, H. Sodium/calcium exchanger in rat olfactory neurons. Neurochem. Int. 30, 523–531 (1997).

    Article  Google Scholar 

  16. Jung, A., Lischka, F.W., Engel, J. & Schild, D. Sodium/calcium exchanger in olfactory receptor neurones of Xenopus laevis. Neuroreport 5, 1741–1744 (1994).

    Article  CAS  Google Scholar 

  17. Reisert, J. & Matthews, H.R. Response properties of isolated mouse olfactory receptor cells. J. Physiol. (Lond.) 530, 113–122 (2001).

    Article  CAS  Google Scholar 

  18. Stephan, A.B. et al. ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc. Natl. Acad. Sci. USA 106, 11776–11781 (2009).

    Article  CAS  Google Scholar 

  19. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    Article  CAS  Google Scholar 

  20. Sammeta, N., Yu, T.T., Bose, S.C. & McClintock, T.S. Mouse olfactory sensory neurons express 10,000 genes. J. Comp. Neurol. 502, 1138–1156 (2007).

    Article  CAS  Google Scholar 

  21. Cygnar, K.D., Stephan, A.B. & Zhao, H. Analyzing responses of mouse olfactory sensory neurons using the air-phase electroolfactogram recording. J. Vis. Exp. 37, e1850 (2010).

    Google Scholar 

  22. Scott, J.W. & Scott-Johnson, P.E. The electroolfactogram: a review of its history and uses. Microsc. Res. Tech. 58, 152–160 (2002).

    Article  Google Scholar 

  23. Cygnar, K.D. & Zhao, H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat. Neurosci. 12, 454–462 (2009).

    Article  CAS  Google Scholar 

  24. Song, Y. et al. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron 58, 374–386 (2008).

    Article  CAS  Google Scholar 

  25. Reisert, J., Yau, K.W. & Margolis, F.L. Olfactory marker protein modulates the cAMP kinetics of the odor-induced response in cilia of mouse olfactory receptor neurons. J. Physiol. (Lond.) 585, 731–740 (2007).

    Article  CAS  Google Scholar 

  26. Reisert, J. & Matthews, H.R. Simultaneous recording of receptor current and intraciliary Ca2+ concentration in salamander olfactory receptor cells. J. Physiol. (Lond.) 535, 637–645 (2001).

    Article  CAS  Google Scholar 

  27. Zhao, H. & Reed, R.R. X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell 104, 651–660 (2001).

    Article  CAS  Google Scholar 

  28. Wong, S.T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

    Article  CAS  Google Scholar 

  29. Belluscio, L., Gold, G.H., Nemes, A. & Axel, R. Mice deficient in G(olf) are anosmic. Neuron 20, 69–81 (1998).

    Article  CAS  Google Scholar 

  30. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004).

    Article  CAS  Google Scholar 

  31. Yan, C. et al. Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 92, 9677–9681 (1995).

    Article  CAS  Google Scholar 

  32. Sautter, A., Zong, X., Hofmann, F. & Biel, M. An isoform of the rod photoreceptor cyclic nucleotide–gated channel beta subunit expressed in olfactory neurons. Proc. Natl. Acad. Sci. USA 95, 4696–4701 (1998).

    Article  CAS  Google Scholar 

  33. Jones, D.T. & Reed, R.R. Golf: an olfactory neuron–specific G protein involved in odorant signal transduction. Science 244, 790–795 (1989).

    Article  CAS  Google Scholar 

  34. Dhallan, R.S., Yau, K.W., Schrader, K.A. & Reed, R.R. Primary structure and functional expression of a cyclic nucleotide–activated channel from olfactory neurons. Nature 347, 184–187 (1990).

    Article  CAS  Google Scholar 

  35. Bakalyar, H.A. & Reed, R.R. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250, 1403–1406 (1990).

    Article  CAS  Google Scholar 

  36. Liman, E.R. & Buck, L.B. A second subunit of the olfactory cyclic nucleotide–gated channel confers high sensitivity to cAMP. Neuron 13, 611–621 (1994).

    Article  CAS  Google Scholar 

  37. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  Google Scholar 

  38. Bradley, J., Li, J., Davidson, N., Lester, H.A. & Zinn, K. Heteromeric olfactory cyclic nucleotide–gated channels: a subunit that confers increased sensitivity to cAMP. Proc. Natl. Acad. Sci. USA 91, 8890–8894 (1994).

    Article  CAS  Google Scholar 

  39. Munger, S.D. et al. Central role of the CNGA4 channel subunit in Ca2+-calmodulin–dependent odor adaptation. Science 294, 2172–2175 (2001).

    Article  CAS  Google Scholar 

  40. Michalakis, S. et al. Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide–gated channel trapping. J. Biol. Chem. 281, 35156–35166 (2006).

    Article  CAS  Google Scholar 

  41. Brunet, L.J., Gold, G.H. & Ngai, J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17, 681–693 (1996).

    Article  CAS  Google Scholar 

  42. Li, X.F., Kraev, A.S. & Lytton, J. Molecular cloning of a fourth member of the potassium-dependent sodium-calcium exchanger gene family, NCKX4. J. Biol. Chem. 277, 48410–48417 (2002).

    Article  CAS  Google Scholar 

  43. Visser, F., Valsecchi, V., Annunziato, L. & Lytton, J. Exchangers NCKX2, NCKX3, and NCKX4: identification of Thr-551 as a key residue in defining the apparent K+ affinity of NCKX2. J. Biol. Chem. 282, 4453–4462 (2007).

    Article  CAS  Google Scholar 

  44. Blaustein, M.P. & Lederer, W.J. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999).

    Article  CAS  Google Scholar 

  45. Schnetkamp, P.P., Basu, D.K. & Szerencsei, R.T. The stoichiometry of Na-Ca+/K exchange in rod outer segments isolated from bovine retinas. Ann. NY Acad. Sci. 639, 10–21 (1991).

    Article  CAS  Google Scholar 

  46. Altimimi, H.F. & Schnetkamp, P.P. Na+/Ca2+-K+ exchangers (NCKX): functional properties and physiological roles. Channels (Austin) 1, 62–69 (2007).

    Article  Google Scholar 

  47. Danaceau, J.P. & Lucero, M.T. Electrogenic Na+/Ca2+ exchange. A novel amplification step in squid olfactory transduction. J. Gen. Physiol. 115, 759–768 (2000).

    Article  CAS  Google Scholar 

  48. Billig, G.M., Pal, B., Fidzinski, P. & Jentsch, T.J. Ca2+-activated Cl(-) currents are dispensable for olfaction. Nat. Neurosci. 14, 763–769 (2011).

    Article  CAS  Google Scholar 

  49. Buiakova, O.I. et al. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 93, 9858–9863 (1996).

    Article  CAS  Google Scholar 

  50. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Bozza for providing the OMP-Cre mouse line. We thank K. Cunningham, K. Cygnar, D. Fambrough, S. Hattar, R. Kuruvilla, D. Luo and F. Margolis for suggestions and discussions. We also thank members of the Hattar-Kuruvilla-Zhao mouse tri-laboratory of the Johns Hopkins Department of Biology for discussions. This research was supported by US National Institutes of Health grant DC007395, a Morley Kare Fellowship (to J.R.) and the Monell Chemical Senses Center. A.B.S. is currently a Department of Energy Biosciences Fellow of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.B.S. and H.Z. designed and performed the initial experiments to identify NCKX4. A.B.S. generated the targeted deletion of Nckx4 in mice and designed and conducted the in situ hybridizations, immunostaining, EOG analyses and behavioral analyses. S.T. set up crosses and weighed the conditional knockout mice, performed the olfactory bulb neural cell adhesion molecule staining and performed the adaptation time course EOG measurements. J.R. designed and performed the single-cell recordings. M.D. performed the Ca2+-free single-cell recordings. C.M.W. analyzed glomerular formation using antibodies to odorant receptor (data not shown). A.B.S., H.Z. and J.R. wrote the initial manuscript draft. All authors discussed the results and the contents of the manuscript.

Corresponding author

Correspondence to Haiqing Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Discussion (PDF 3281 kb)

Supplementary Movie 1

Buried Food Pellet Test. Video shows a representative WT and olfactory conditional Nckx4 knockout mouse trial on Trial Day 5. The time to find the first pellet was determined from the moment the mouse was placed into the cage until it picked up and began eating the food pellet. The movie plays in 4X speed. (MOV 7012 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephan, A., Tobochnik, S., Dibattista, M. et al. The Na+/Ca2+ exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response. Nat Neurosci 15, 131–137 (2012). https://doi.org/10.1038/nn.2943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2943

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing