Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Differential roles of human striatum and amygdala in associative learning

Abstract

Although the human amygdala and striatum have both been implicated in associative learning, only the striatum's contribution has been consistently computationally characterized. Using a reversal learning task, we found that amygdala blood oxygen level–dependent activity tracked associability as estimated by a computational model, and dissociated it from the striatal representation of reinforcement prediction error. These results extend the computational learning approach from striatum to amygdala, demonstrating their complementary roles in aversive learning.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design and behavioral model fit.
Figure 2: Neural correlates of associability and prediction error term.

Similar content being viewed by others

References

  1. Schultz, W., Dayan, P. & Montague, P.R. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. O'Doherty, J.P., Dayan, P., Friston, K., Critchley, H. & Dolan, R.J. Neuron 38, 329–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Delgado, M.R., Li, J., Schiller, D. & Phelps, E.A. Phil. Trans. R. Soc. Lond. B 363, 3787–3800 (2008).

    Article  Google Scholar 

  4. Davis, M. & Whalen, P.J. Mol. Psychiatry 6, 13–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Phelps, E.A. in The Human Amygdala (eds. Whalen, P. & Phelps, E.) 204–219 (Guilford Press, New York, 2009).

  6. Pearce, J.M. & Hall, G. Psychol. Rev. 87, 532–552 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Holland, P.C. & Gallagher, M. Trends Cogn. Sci. 3, 65–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Roesch, M.R., Calu, D.J., Esber, G.R. & Schoenbaum, G. J. Neurosci. 30, 2464–2471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belova, M.A., Paton, J.J., Morrison, S.E. & Salzman, C.D. Neuron 55, 970–984 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schiller, D., Levy, I., Niv, Y., LeDoux, J.E. & Phelps, E.A. J. Neurosci. 28, 11517–11525 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Courville, A.C., Daw, N.D. & Touretzky, D.S. Trends Cogn. Sci. 10, 294–300 (2006).

    Article  PubMed  Google Scholar 

  12. Preuschoff, K. & Bossaerts, P. Ann. NY Acad. Sci. 1104, 135–146 (2007).

    Article  PubMed  Google Scholar 

  13. Behrens, T.E.J., Woolrich, M.W., Walton, M.E. & Rushworth, M.F.S. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Robbins, T.W., Cador, M., Taylor, J.R. & Everitt, B.J. Neurosci. Biobehav. Rev. 13, 155–162 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Baxter, M.G. & Murray, E.A. Nat. Rev. Neurosci. 3, 563–573 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Glimcher, R. Rutledge and E. DeWitt for discussions and comments. This research was supported by a McKnight Foundation Scholar Award, Human Frontiers Science Program grant RGP0036/2009-C, US National Institutes of Health (NIH) grant MH087882 (part of the CRCNS program, to N.D.D.), a James S. McDonnell Foundation grant and NIH grant MH080756 to E.A.P., and NIH grants DA015718 and AG027097 to G.S. This work was also supported by a Seaver Foundation grant to the Center for Brain Imaging.

Author information

Authors and Affiliations

Authors

Contributions

E.A.P. and D.S. designed the study and conducted the experiment. J.L. and N.D.D. performed the data analysis. J.L., D.S., G.S., E.A.P. and N.D.D. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–5 and Supplementary Methods (PDF 3279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Schiller, D., Schoenbaum, G. et al. Differential roles of human striatum and amygdala in associative learning. Nat Neurosci 14, 1250–1252 (2011). https://doi.org/10.1038/nn.2904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing