Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of rodent secondary motor cortex in value-based action selection

A Corrigendum to this article was published on 22 November 2013

This article has been updated

Abstract

Despite widespread neural activity related to reward values, signals related to upcoming choice have not been clearly identified in the rodent brain. Here we examined neuronal activity in the lateral (AGl) and medial (AGm) agranular cortex, corresponding to the primary and secondary motor cortex, respectively, in rats performing a dynamic foraging task. Choice signals, before behavioral manifestation of the rat's choice, arose in the AGm earlier than in any other areas of the rat brain previously studied under free-choice conditions. The AGm also conveyed neural signals for decision value and chosen value. By contrast, upcoming choice signals arose later, and value signals were weaker, in the AGl. We also found that AGm lesions made the rats' choices less dependent on dynamically updated values. These results suggest that rodent secondary motor cortex might be uniquely involved in both representing and reading out value signals for flexible action selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral task and choice behavior.
Figure 2: Recording sites.
Figure 3: Neural signals for the rat's choice and reward.
Figure 4: Neural signals for values.
Figure 5: Convergence of neural signals for chosen action, reward and chosen value in the AGm.
Figure 6: Effects of AGm lesions.
Figure 7: Regional variations in neural signals related to valuation and choice in rodent frontal cortex and striatum.

Similar content being viewed by others

Change history

  • 12 April 2012

    In the version of this article initially published, the percentages of neurons encoding action value Qx(t) shown in Figure 7b were incorrect owing to a mistake in the computer code used to analyze the data. The error has been corrected in the HTML and PDF versions of the article.

  • 22 November 2013

    Nat. Neurosci. 14, 1202–1208 (2011); published online 14 August 2011; corrected after print 12 April 2012 In the version of this article initially published, the percentages of neurons encoding action value Qx(t) shown in Figure 7b were incorrect owing to a mistake in the computer code used to analyze the data:

References

  1. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  2. Kim, H., Sul, J.H., Huh, N., Lee, D. & Jung, M.W. Role of striatum in updating values of chosen actions. J. Neurosci. 29, 14701–14712 (2009).

    Article  CAS  Google Scholar 

  3. Lau, B. & Glimcher, P.W. Value representations in the primate striatum during matching behavior. Neuron 58, 451–463 (2008).

    Article  CAS  Google Scholar 

  4. Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    Article  CAS  Google Scholar 

  5. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    Article  CAS  Google Scholar 

  6. Seo, H., Barraclough, D.J. & Lee, D. Lateral intraparietal cortex and reinforcement learning during a mixed-strategy game. J. Neurosci. 29, 7278–7289 (2009).

    Article  CAS  Google Scholar 

  7. Seo, H. & Lee, D. Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game. J. Neurosci. 27, 8366–8377 (2007).

    Article  CAS  Google Scholar 

  8. Sul, J.H., Kim, H., Huh, N., Lee, D. & Jung, M.W. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66, 449–460 (2010).

    Article  CAS  Google Scholar 

  9. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  10. Roesch, M.R., Taylor, A.R. & Schoenbaum, G. Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron 51, 509–520 (2006).

    Article  CAS  Google Scholar 

  11. Seo, H. & Lee, D. Behavioral and neural changes after gains and losses of conditioned reinforcers. J. Neurosci. 29, 3627–3641 (2009).

    Article  CAS  Google Scholar 

  12. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  Google Scholar 

  13. Barraclough, D.J., Conroy, M.L. & Lee, D. Prefrontal cortex and decision making in a mixed-strategy game. Nat. Neurosci. 7, 404–410 (2004).

    Article  CAS  Google Scholar 

  14. Coe, B., Tomihara, K., Matsuzawa, M. & Hikosaka, O. Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J. Neurosci. 22, 5081–5090 (2002).

    Article  CAS  Google Scholar 

  15. Pesaran, B., Nelson, M.J. & Andersen, R.A. Free choice activates a decision circuit between frontal and parietal cortex. Nature 453, 406–409 (2008).

    Article  CAS  Google Scholar 

  16. Louie, K. & Glimcher, P.W. Separating value from choice: delay discounting activity in the lateral intraparietal area. J. Neurosci. 30, 5498–5507 (2010).

    Article  CAS  Google Scholar 

  17. Kennerley, S.W., Dahmubed, A.F., Lara, A.H. & Wallis, J.D. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21, 1162–1178 (2009).

    Article  Google Scholar 

  18. Kim, Y.B. et al. Encoding of action history in the rat ventral striatum. J. Neurophysiol. 98, 3548–3556 (2007).

    Article  Google Scholar 

  19. Huh, N., Jo, S., Kim, H., Sul, J.H. & Jung, M.W. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents. Learn. Mem. 16, 315–323 (2009).

    Article  Google Scholar 

  20. Felsen, G. & Mainen, Z.F. Neural substrates of sensory-guided locomotor decisions in the rat superior colliculus. Neuron 60, 137–148 (2008).

    Article  CAS  Google Scholar 

  21. Reep, R.L., Corwin, J.V., Hashimoto, A. & Watson, R.T. Efferent connections of the rostral portion of medial agranular cortex in rats. Brain Res. Bull. 19, 203–221 (1987).

    Article  CAS  Google Scholar 

  22. Donoghue, J.P. & Parham, C. Afferent connections of the lateral agranular field of the rat motor cortex. J. Comp. Neurol. 217, 390–404 (1983).

    Article  CAS  Google Scholar 

  23. Donoghue, J.P. & Wise, S.P. The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J. Comp. Neurol. 212, 76–88 (1982).

    Article  CAS  Google Scholar 

  24. Miller, M.W. The origin of corticospinal projection neurons in rat. Exp. Brain Res. 67, 339–351 (1987).

    Article  CAS  Google Scholar 

  25. Sanderson, K.J., Welker, W. & Shambes, G.M. Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats. Brain Res. 292, 251–260 (1984).

    Article  CAS  Google Scholar 

  26. Neafsey, E.J. et al. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res. 396, 77–96 (1986).

    Article  CAS  Google Scholar 

  27. Reep, R.L., Goodwin, G.S. & Corwin, J.V. Topographic organization in the corticocortical connections of medial agranular cortex in rats. J. Comp. Neurol. 294, 262–280 (1990).

    Article  CAS  Google Scholar 

  28. Passingham, R.E., Myers, C., Rawlins, N., Lightfoot, V. & Fearn, S. Premotor cortex in the rat. Behav. Neurosci. 102, 101–109 (1988).

    Article  CAS  Google Scholar 

  29. Akintunde, A. & Buxton, D.F. Differential sites of origin and collateralization of corticospinal neurons in the rat: a multiple fluorescent retrograde tracer study. Brain Res. 575, 86–92 (1992).

    Article  CAS  Google Scholar 

  30. Reep, R.L., Corwin, J.V., Hashimoto, A. & Watson, R.T. Afferent connections of medial precentral cortex in the rat. Neurosci. Lett. 44, 247–252 (1984).

    Article  CAS  Google Scholar 

  31. Wang, Y. & Kurata, K. Quantitative analyses of thalamic and cortical origins of neurons projecting to the rostral and caudal forelimb motor areas in the cerebral cortex of rats. Brain Res. 781, 135–147 (1998).

    Article  Google Scholar 

  32. Nachev, P., Kennard, C. & Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 9, 856–869 (2008).

    Article  CAS  Google Scholar 

  33. Uylings, H.B. & van Eden, C.G. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog. Brain Res. 85, 31–62 (1990).

    Article  CAS  Google Scholar 

  34. Tanji, J. The supplementary motor area in the cerebral cortex. Neurosci. Res. 19, 251–268 (1994).

    Article  CAS  Google Scholar 

  35. Buschman, T.J. & Miller, E.K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    Article  CAS  Google Scholar 

  36. Kargo, W.J., Szatmary, B. & Nitz, D.A. Adaptation of prefrontal cortical firing patterns and their fidelity to changes in action-reward contingencies. J. Neurosci. 27, 3548–3559 (2007).

    Article  CAS  Google Scholar 

  37. Hoshi, E. & Tanji, J. Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr. Opin. Neurobiol. 17, 234–242 (2007).

    Article  CAS  Google Scholar 

  38. Roesch, M.R. & Olson, C.R. Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J. Neurophysiol. 90, 1766–1789 (2003).

    Article  Google Scholar 

  39. Roesch, M.R. & Olson, C.R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004).

    Article  CAS  Google Scholar 

  40. Sohn, J.W. & Lee, D. Order-dependent modulation of directional signals in the supplementary and presupplementary motor areas. J. Neurosci. 27, 13655–13666 (2007).

    Article  CAS  Google Scholar 

  41. Thevarajah, D., Mikulic, A. & Dorris, M.C. Role of the superior colliculus in choosing mixed-strategy saccades. J. Neurosci. 29, 1998–2008 (2009).

    Article  CAS  Google Scholar 

  42. Balleine, B.W., Delgado, M.R. & Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci. 27, 8161–8165 (2007).

    Article  CAS  Google Scholar 

  43. Schoenbaum, G., Roesch, M.R. & Stalnaker, T.A. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 29, 116–124 (2006).

    Article  CAS  Google Scholar 

  44. Ragozzino, M.E. The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann. NY Acad. Sci. 1121, 355–375 (2007).

    Article  Google Scholar 

  45. Kable, J.W. & Glimcher, P.W. The neurobiology of decision: consensus and controversy. Neuron 63, 733–745 (2009).

    Article  CAS  Google Scholar 

  46. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, San Diego, 1998).

  47. Staddon, J.E., Hinson, J.M. & Kram, R. Optimal choice. J. Exp. Anal. Behav. 35, 397–412 (1981).

    Article  CAS  Google Scholar 

  48. Lau, B. & Glimcher, P.W. Dynamic response-by-response models of matching behavior in rhesus monkeys. J. Exp. Anal. Behav. 84, 555–579 (2005).

    Article  Google Scholar 

  49. Baeg, E.H. et al. Fast spiking and regular spiking neural correlates of fear conditioning in the medial prefrontal cortex of the rat. Cereb. Cortex 11, 441–451 (2001).

    Article  CAS  Google Scholar 

  50. Baeg, E.H. et al. Dynamics of population code for working memory in the prefrontal cortex. Neuron 40, 177–188 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Lee for discussion, P. Nachev for commenting on the manuscript, J.W. Ghim for helping with analysis and E. Seuter for proofreading the manuscript. This work was supported by a grant from the Brain Research Center of the 21st Century Frontier Research Program, a Korea National Research Foundation grant (2011-0015618), the Cognitive Neuroscience Program, and the Original Technology Research Program for Brain Science (2011-0019209) funded by the Ministry of Education, Science and Technology, Korea (to M.W.J.), and the US National Institutes of Health (to D.L.).

Author information

Authors and Affiliations

Authors

Contributions

J.H.S. was involved in all aspects of the study. S.J. performed the lesion experiments. M.W.J. and D.L. contributed to the design of the experiments, data analysis and manuscript preparation.

Corresponding author

Correspondence to Min Whan Jung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2, Supplementary Note (PDF 1587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sul, J., Jo, S., Lee, D. et al. Role of rodent secondary motor cortex in value-based action selection. Nat Neurosci 14, 1202–1208 (2011). https://doi.org/10.1038/nn.2881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing