Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex

Abstract

Neuronal responses during sensory processing are influenced by both the organization of intracortical connections and the statistical features of sensory stimuli. How these intrinsic and extrinsic factors govern the activity of excitatory and inhibitory populations is unclear. Using two-photon calcium imaging in vivo and intracellular recordings in vitro, we investigated the dependencies between synaptic connectivity, feature selectivity and network activity in pyramidal cells and fast-spiking parvalbumin-expressing (PV) interneurons in mouse visual cortex. In pyramidal cell populations, patterns of neuronal correlations were largely stimulus-dependent, indicating that their responses were not strongly dominated by functionally biased recurrent connectivity. By contrast, visual stimulation only weakly modified co-activation patterns of fast-spiking PV cells, consistent with the observation that these broadly tuned interneurons received very dense and strong synaptic input from nearby pyramidal cells with diverse feature selectivities. Therefore, feedforward and recurrent network influences determine the activity of excitatory and inhibitory ensembles in fundamentally different ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calcium imaging and electrophysiological recordings of visually evoked responses in PV neurons.
Figure 2: Assessing synaptic connectivity in vitro between neurons functionally characterized in vivo.
Figure 3: Relationship between response similarity and pair-wise correlations during spontaneous activity.
Figure 4: Comparison of population activity patterns with and without visual stimulation.
Figure 5: Comparison between spontaneous and noise correlation patterns during visual stimulation.

Similar content being viewed by others

References

  1. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  Google Scholar 

  2. Gonchar, Y., Wang, Q. & Burkhalter, A. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanat. 1, 3 (2007).

    PubMed  Google Scholar 

  3. Sillito, A.M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. (Lond.) 250, 305–329 (1975).

    Article  CAS  Google Scholar 

  4. Priebe, N.J. & Ferster, D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482–497 (2008).

    Article  CAS  Google Scholar 

  5. Ozeki, H., Finn, I.M., Schaffer, E.S., Miller, K.D. & Ferster, D. Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62, 578–592 (2009).

    Article  CAS  Google Scholar 

  6. Liu, B. et al. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat. Neurosci. 13, 89–96 (2010).

    Article  CAS  Google Scholar 

  7. Holmgren, C., Harkany, T., Svennenfors, B. & Zilberter, Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. (Lond.) 551, 139–153 (2003).

    Article  CAS  Google Scholar 

  8. Thomson, A.M. & Lamy, C. Functional maps of neocortical local circuitry. Front. Neurosci. 1, 19–42 (2007).

    Article  CAS  Google Scholar 

  9. Oswald, A.-M.M., Doiron, B., Rinzel, J. & Reyes, A.D. Spatial profile and differential recruitment of GABAB modulate oscillatory activity in auditory cortex. J. Neurosci. 29, 10321–10334 (2009).

    Article  CAS  Google Scholar 

  10. Yoshimura, Y. & Callaway, E.M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat. Neurosci. 8, 1552–1559 (2005).

    Article  CAS  Google Scholar 

  11. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    Article  CAS  Google Scholar 

  12. Yoshimura, Y., Dantzker, J.L.M. & Callaway, E.M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005).

    Article  CAS  Google Scholar 

  13. Gilbert, C.D. & Wiesel, T.N. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989).

    Article  CAS  Google Scholar 

  14. Alonso, J.M., Usrey, W.M. & Reid, R.C. Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci. 21, 4002–4015 (2001).

    Article  CAS  Google Scholar 

  15. Alonso, J.M. & Martinez, L.M. Functional connectivity between simple cells and complex cells in cat striate cortex. Nat. Neurosci. 1, 395–403 (1998).

    Article  CAS  Google Scholar 

  16. Hirsch, J.A. et al. Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nat. Neurosci. 6, 1300–1308 (2003).

    Article  CAS  Google Scholar 

  17. Cardin, J.A., Palmer, L.A. & Contreras, D. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J. Neurosci. 27, 10333–10344 (2007).

    Article  CAS  Google Scholar 

  18. Nowak, L.G., Sanchez-Vives, M.V. & McCormick, D.A. Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. Cereb. Cortex 18, 1058–1078 (2008).

    Article  Google Scholar 

  19. Sohya, K., Kameyama, K., Yanagawa, Y., Obata, K. & Tsumoto, T. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J. Neurosci. 27, 2145–2149 (2007).

    Article  CAS  Google Scholar 

  20. Kerlin, A.M., Andermann, M.L., Berezovskii, V.K. & Reid, R.C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010).

    Article  CAS  Google Scholar 

  21. Ma, W. et al. Visual representations by cortical somatostatin inhibitory neurons—selective but with weak and delayed responses. J. Neurosci. 30, 14371–14379 (2010).

    Article  CAS  Google Scholar 

  22. Runyan, C.A. et al. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron 67, 847–857 (2010).

    Article  CAS  Google Scholar 

  23. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  Google Scholar 

  24. Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286, 1943–1946 (1999).

    Article  CAS  Google Scholar 

  25. Ch'ng, Y.H. & Reid, R.C. Cellular imaging of visual cortex reveals the spatial and functional organization of spontaneous activity. Front. Integr. Neurosci. 4, 20 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573–578 (2004).

    Article  CAS  Google Scholar 

  27. MacLean, J.N., Watson, B.O., Aaron, G.B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005).

    Article  CAS  Google Scholar 

  28. Luczak, A., Barthó, P. & Harris, K.D. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62, 413–425 (2009).

    Article  CAS  Google Scholar 

  29. Jermakowicz, W.J., Chen, X., Khaytin, I., Bonds, A.B. & Casagrande, V.A. Relationship between spontaneous and evoked spike-time correlations in primate visual cortex. J. Neurophysiol. 101, 2279–2289 (2009).

    Article  Google Scholar 

  30. Smith, M.A. & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28, 12591–12603 (2008).

    Article  CAS  Google Scholar 

  31. Kohn, A. & Smith, M.A. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005).

    Article  CAS  Google Scholar 

  32. Nauhaus, I., Busse, L., Carandini, M. & Ringach, D.L. Stimulus contrast modulates functional connectivity in visual cortex. Nat. Neurosci. 12, 70–76 (2009).

    Article  CAS  Google Scholar 

  33. Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).

    Article  CAS  Google Scholar 

  34. Ecker, A.S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).

    Article  CAS  Google Scholar 

  35. Ohiorhenuan, I.E. et al. Sparse coding and high-order correlations in fine-scale cortical networks. Nature 466, 617–621 (2010).

    Article  CAS  Google Scholar 

  36. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  37. Ohki, K., Chung, S., Ch'ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    Article  CAS  Google Scholar 

  38. Mrsic-Flogel, T.D. et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 (2007).

    Article  CAS  Google Scholar 

  39. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  Google Scholar 

  40. Vogelstein, J.T. et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010).

    Article  Google Scholar 

  41. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  CAS  Google Scholar 

  42. Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75 (1999).

    Article  CAS  Google Scholar 

  43. Gibson, J.R., Beierlein, M. & Connors, B.W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    Article  CAS  Google Scholar 

  44. Gentet, L.J., Avermann, M., Matyas, F., Staiger, J.F. & Petersen, C.C.H. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010).

    Article  CAS  Google Scholar 

  45. Zohary, E., Shadlen, M.N. & Newsome, W.T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    Article  CAS  Google Scholar 

  46. Poulet, J.F.A. & Petersen, C.C.H. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    Article  CAS  Google Scholar 

  47. Chelaru, M.I. & Dragoi, V. Efficient coding in heterogeneous neuronal populations. Proc. Natl. Acad. Sci. USA 105, 16344–16349 (2008).

    Article  CAS  Google Scholar 

  48. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N.D. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    Article  CAS  Google Scholar 

  49. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  50. Tanahira, C. et al. Parvalbumin neurons in the forebrain as revealed by PV-Cre transgenic mice. Neurosci. Res. 63, 213–223 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Margrie, A. Arenz and E. Rancz for help with in vivo electrophysiology, J. Sjöström and K. Buchanan for help with in vitro electrophysiology, J. Rothman for NeuroMatic software, and M. Hübener and M. Sahani for comments on an earlier version of this manuscript. This work was supported by the Wellcome Trust (T.D.M.-F.), the European Research Council (T.D.M.-F.), the European Molecular Biology Organization (S.B.H.) and the Humboldt Foundation (S.B.H.). We also received funding from the European Community's Seventh Framework Programme (FP2007-2013) under grant agreement no. 223326 (T.D.M.-F.).

Author information

Authors and Affiliations

Authors

Contributions

S.B.H. and H.K. performed all in vivo and slice experiments. S.B.H., H.K., N.A.L. and T.D.M.-F. analyzed the data. H.R. carried out antibody labeling. B.P. developed software for visual stimulation, image acquisition and image analysis. J.V. developed spike inference algorithms. E.L. and H.Z. generated and supplied the mice. S.B.H., H.K., N.A.L. and T.D.M.-F. wrote the paper.

Corresponding author

Correspondence to Thomas D Mrsic-Flogel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1762 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofer, S., Ko, H., Pichler, B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat Neurosci 14, 1045–1052 (2011). https://doi.org/10.1038/nn.2876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing