Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UNC119 is required for G protein trafficking in sensory neurons

Abstract

UNC119 is widely expressed among vertebrates and other phyla. We found that UNC119 recognized the acylated N terminus of the rod photoreceptor transducin α (Tα) subunit and Caenorhabditis elegans G proteins ODR-3 and GPA-13. The crystal structure of human UNC119 at 1.95-Å resolution revealed an immunoglobulin-like β-sandwich fold. Pulldowns and isothermal titration calorimetry revealed a tight interaction between UNC119 and acylated Gα peptides. The structure of co-crystals of UNC119 with an acylated Tα N-terminal peptide at 2.0 Å revealed that the lipid chain is buried deeply into UNC119′s hydrophobic cavity. UNC119 bound Tα-GTP, inhibiting its GTPase activity, thereby providing a stable UNC119–Tα-GTP complex capable of diffusing from the inner segment back to the outer segment after light-induced translocation. UNC119 deletion in both mouse and C. elegans led to G protein mislocalization. Thus, UNC119 is a Gα subunit cofactor essential for G protein trafficking in sensory cilia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of human UNC119.
Figure 2: Interaction of UNC119 with Tα polypeptides.
Figure 3: UNC119 is an acyl-binding protein.
Figure 4: The lipid-binding pocket of UNC119.
Figure 5: UNC119 interacts with Tα-GTP and inhibits GTPase activity.
Figure 6: Slow return of transducin to the outer segment after intense light exposure.
Figure 7: Mislocalization of the G proteins ODR-3 and GPA-13 in a C. elegans unc-119(ed3) mutant.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rosenbaum, J.L. & Witman, G.B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  2. Jin, H. et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219 (2010).

    Article  CAS  Google Scholar 

  3. Kim, J., Krishnaswami, S.R. & Gleeson, J.G. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum. Mol. Genet. 17, 3796–3805 (2008).

    Article  CAS  Google Scholar 

  4. Gillingham, A.K. & Munro, S. The small G proteins of the Arf family and their regulators. Annu. Rev. Cell Dev. Biol. 23, 579–611 (2007).

    Article  CAS  Google Scholar 

  5. Zhang, H. et al. Deletion of PrBPδ impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc. Natl. Acad. Sci. USA 104, 8857–8862 (2007).

    Article  CAS  Google Scholar 

  6. Keller, L.C. et al. Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol. Biol. Cell 20, 1150–1166 (2009).

    Article  CAS  Google Scholar 

  7. Chung, S., Kang, S., Paik, S. & Lee, J. NgUNC-119, Naegleria homologue of UNC-119, localizes to the flagellar rootlet. Gene 389, 45–51 (2007).

    Article  CAS  Google Scholar 

  8. Maduro, M. & Pilgrim, D. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141, 977–988 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, Q. et al. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteomics 6, 1299–1317 (2007).

    Article  CAS  Google Scholar 

  10. Higashide, T., Murakami, A., McLaren, M.J. & Inana, G. Cloning of the cDNA for a novel photoreceptor protein. J. Biol. Chem. 271, 1797–1804 (1996).

    Article  CAS  Google Scholar 

  11. Swanson, D.A., Chang, J.T., Campochiaro, P.A., Zack, D.J. & Valle, D. Mammalian orthologs of C. elegans unc-119 highly expressed in photoreceptors. Invest. Ophthalmol. Vis. Sci. 39, 2085–2094 (1998).

    CAS  PubMed  Google Scholar 

  12. Ishiba, Y. et al. Targeted inactivation of synaptic HRG4 (UNC119) causes dysfunction in the distal photoreceptor and slow retinal degeneration, revealing a new function. Exp. Eye Res. 84, 473–485 (2007).

    Article  CAS  Google Scholar 

  13. Higashide, T., McLaren, M.J. & Inana, G. Localization of HRG4, a photoreceptor protein homologous to Unc-119, in ribbon synapse. Invest. Ophthalmol. Vis. Sci. 39, 690–698 (1998).

    CAS  PubMed  Google Scholar 

  14. Kobayashi, A., Kubota, S., Mori, N., McLaren, M.J. & Inana, G. Photoreceptor synaptic protein HRG4 (UNC119) interacts with ARL2 via a putative conserved domain. FEBS Lett. 534, 26–32 (2003).

    Article  CAS  Google Scholar 

  15. Veltel, S., Kravchenko, A., Ismail, S. & Wittinghofer, A. Specificity of Arl2/Arl3 signaling is mediated by a ternary Arl3-effector-GAP complex. FEBS Lett. 582, 2501–2507 (2008).

    Article  CAS  Google Scholar 

  16. Haeseleer, F. Interaction and colocalization of CaBP4 and Unc119 (MRG4) in photoreceptors. Invest. Ophthalmol. Vis. Sci. 49, 2366–2375 (2008).

    Article  Google Scholar 

  17. Alpadi, K. et al. RIBEYE recruits Munc119, a mammalian ortholog of the Caenorhabditis elegans protein unc119, to synaptic ribbons of photoreceptor synapses. J. Biol. Chem. 283, 26461–26467 (2008).

    Article  CAS  Google Scholar 

  18. Kobayashi, A. et al. HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Invest. Ophthalmol. Vis. Sci. 41, 3268–3277 (2000).

    CAS  PubMed  Google Scholar 

  19. Vepachedu, R., Karim, Z., Patel, O., Goplen, N. & Alam, R. Unc119 protects from Shigella infection by inhibiting the Abl family kinases. PLoS ONE 4, e5211 (2009).

    Article  Google Scholar 

  20. Gorska, M.M., Cen, O., Liang, Q., Stafford, S.J. & Alam, R. Differential regulation of interleukin 5–stimulated signaling pathways by dynamin. J. Biol. Chem. 281, 14429–14439 (2006).

    Article  CAS  Google Scholar 

  21. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309–320 (1994).

    CAS  PubMed  Google Scholar 

  22. Hoffman, G.R., Nassar, N. & Cerione, R.A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).

    Article  CAS  Google Scholar 

  23. Hanzal-Bayer, M., Renault, L., Roversi, P., Wittinghofer, A. & Hillig, R.C. The complex of Arl2-GTP and PDE delta: from structure to function. EMBO J. 21, 2095–2106 (2002).

    Article  CAS  Google Scholar 

  24. Zhang, H. et al. Photoreceptor cGMP phosphodiesterase delta subunit (PDEdelta) functions as a prenyl-binding protein. J. Biol. Chem. 279, 407–413 (2004).

    Article  CAS  Google Scholar 

  25. Goc, A. et al. Different properties of the native and reconstituted heterotrimeric G protein transducin. Biochemistry 47, 12409–12419 (2008).

    Article  CAS  Google Scholar 

  26. Kerov, V. et al. N-terminal fatty acylation of transducin profoundly influences its localization and the kinetics of photoresponse in rods. J. Neurosci. 27, 10270–10277 (2007).

    Article  CAS  Google Scholar 

  27. Baehr, W., Morita, E., Swanson, R. & Applebury, M.L. Characterization of bovine rod outer segment G protein. J. Biol. Chem. 257, 6452–6460 (1982).

    CAS  PubMed  Google Scholar 

  28. Marrari, Y., Crouthamel, M., Irannejad, R. & Wedegaertner, P.B. Assembly and trafficking of heterotrimeric G proteins. Biochemistry 46, 7665–7677 (2007).

    Article  CAS  Google Scholar 

  29. Slepak, V.Z. & Hurley, J.B. Mechanism of light-induced translocation of arrestin and transducin in photoreceptors: interaction-restricted diffusion. IUBMB Life 60, 2–9 (2008).

    Article  CAS  Google Scholar 

  30. Sokolov, M. et al. Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron 34, 95–106 (2002).

    Article  CAS  Google Scholar 

  31. Elias, R.V., Sezate, S.S., Cao, W. & McGinnis, J.F. Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells. Mol. Vis. 10, 672–681 (2004).

    CAS  PubMed  Google Scholar 

  32. Calvert, P.D., Strissel, K.J., Schiesser, W.E., Pugh, E.N. Jr. & Arshavsky, V.Y. Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol. 16, 560–568 (2006).

    Article  CAS  Google Scholar 

  33. Knobel, K.M., Davis, W.S., Jorgensen, E.M. & Bastiani, M.J. UNC-119 suppresses axon branching in C. elegans. Development 128, 4079–4092 (2001).

    CAS  PubMed  Google Scholar 

  34. Roayaie, K., Crump, J.G., Sagasti, A. & Bargmann, C.I. The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20, 55–67 (1998).

    Article  CAS  Google Scholar 

  35. Lans, H., Rademakers, S. & Jansen, G. A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Genetics 167, 1677–1687 (2004).

    Article  CAS  Google Scholar 

  36. Perkins, L.A., Hedgecock, E.M., Thomson, J.N. & Culotti, J.G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 (1986).

    Article  CAS  Google Scholar 

  37. Sokolov, M. et al. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse. J. Biol. Chem. 279, 19149–19156 (2004).

    Article  CAS  Google Scholar 

  38. Cowan, C.W., Wensel, T.G. & Arshavsky, V.Y. Enzymology of GTPase acceleration in phototransduction. Methods Enzymol. 315, 524–538 (2000).

    Article  CAS  Google Scholar 

  39. Troemel, E.R., Kimmel, B.E. & Bargmann, C.I. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169 (1997).

    Article  CAS  Google Scholar 

  40. Acton, T.B. et al. Robotic cloning and Protein Production Platform of the Northeast Structural Genomics Consortium. Methods Enzymol. 394, 210–243 (2005).

    Article  CAS  Google Scholar 

  41. Chayen, N.E., Stewart, P.D., Maeder, D.L. & Blow, D.M. An automated system for micro-batch protein crystallization and screening. J. Appl. Crystallogr. 23, 297–302 (1990).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, D. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  43. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  44. Terwilliger, T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003).

    Article  CAS  Google Scholar 

  45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  46. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  47. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–383 (2007).

    Article  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  49. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  50. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Abramowitz and J. Schwanof for access to the X4A beamline at the National Synchrotron Light Source and G. DeTitta of Hauptman Woodward Research Institute for crystallization screening. This work was supported by US National Institutes of Health grants EY08123 (W.B.), EY019298 (W.B.), EY014800-039003 (National Eye Institute core grant), EY10848 (G.I.) and NS034307 (E.M.J.), by the Howard Hughes Medical Institute (E.M.J.), by a grant from the Protein Structure Initiative of the US National Institutes of Health (U54 GM074958), by the University of Utah Macromolecule Crystallography Core Facility, by a Center Grant of the Foundation Fighting Blindness to the University of Utah, and unrestricted grants to the Departments of Ophthalmology at the University of Utah from Research to Prevent Blindness. W.B. is a recipient of a Research to Prevent Blindness Senior Investigator Award.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. generated pulldown/light-induced translocation results and is responsible for C. elegans immunostaining and imaging. R.C. generated ITC results. R.C., F.G.W. and C.P.H. generated human UNC119/acylated Tα-peptide co-crystals and determined the structure. S.V., Y.C., J.S., Y.J.H., R.X., G.T.M. and L.T. determined the unbound human UNC119 structure. R.C., C.D.G. and W.B. isolated ROS membranes, transducin and determined GTPase activity. M.W.D. and E.M.J. generated transgenic C. elegans mutants. G.I. generated the Unc119 knockout mouse. H.Z., R.C., C.P.H., L.T. and W.B. wrote the manuscript.

Corresponding author

Correspondence to Wolfgang Baehr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1 and 2 (PDF 2571 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Constantine, R., Vorobiev, S. et al. UNC119 is required for G protein trafficking in sensory neurons. Nat Neurosci 14, 874–880 (2011). https://doi.org/10.1038/nn.2835

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing