Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex

Abstract

Projection neurons migrate from the ventricular zone to the neocortical plate during the development of the mouse brain. Their overall movement is radial, but they become multipolar and move nonradially in the intermediate zone. Here we show that Reelin, the Rap1 GTPase and N-cadherin (NCad) are important for multipolar neurons to polarize their migration toward the cortical plate. Inhibition and rescue experiments indicated that Reelin regulates migration through Rap1 and Akt, and that the Rap1-regulated GTPases RalA, RalB, Rac1 and Cdc42 are also involved. We found that Rap1 regulated the plasma membrane localization of NCad and NCad rescued radial polarization when Rap1 was inhibited. However, inhibition of Rap1 or NCad had little effect on glia-dependent locomotion. We propose a multistep mechanism in which Reelin activates Rap1, Rap1 upregulates NCad, and NCad is needed to orient cell migration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rap activity is required cell-autonomously for neurons to enter the upper intermediate zone and cortical plate.
Figure 2: Rap1 is required to orient multipolar cells but not for migration of bipolar neurons.
Figure 3: Rap1 regulates adhesion to NCad and membrane levels of NCad.
Figure 4: NCad is required to orient multipolar cells, under control of Rap1.
Figure 5: Reelin regulates Rap1 and entry into the RMZ.

Similar content being viewed by others

References

  1. Bielas, S., Higginbotham, H., Koizumi, H., Tanaka, T. & Gleeson, J.G. Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu. Rev. Cell Dev. Biol. 20, 593–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Tabata, H. & Nakajima, K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996–10001 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Anda, F.C., Meletis, K., Ge, X., Rei, D. & Tsai, L.H. Centrosome motility is essential for initial axon formation in the neocortex. J. Neurosci. 30, 10391–10406 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nadarajah, B., Brunstrom, J.E., Grutzendler, J., Wong, R.O. & Pearlman, A.L. Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, G. et al. Semaphorin-3A guides radial migration of cortical neurons during development. Nat. Neurosci. 11, 36–44 (2008).

    Article  PubMed  Google Scholar 

  7. Tsai, J.W., Chen, Y., Kriegstein, A.R. & Vallee, R.B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park, H.O. & Bi, E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev. 71, 48–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwamborn, J.C. & Puschel, A.W. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat. Neurosci. 7, 923–929 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Nelson, W.J. Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem. Soc. Trans. 36, 149–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kooistra, M.R., Dube, N. & Bos, J.L. Rap1: a key regulator in cell-cell junction formation. J. Cell Sci. 120, 17–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Jossin, Y. Neuronal migration and the role of reelin during early development of the cerebral cortex. Mol. Neurobiol. 30, 225–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Gumbiner, B.M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Rubinfeld, B. et al. Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell 65, 1033–1042 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Nichols, A.J., Carney, L.H. & Olson, E.C. Comparison of slow and fast neocortical neuron migration using a new in vitro model. BMC Neurosci. 9, 50 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bivona, T.G. et al. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J. Cell Biol. 164, 461–470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boettner, B. & Van Aelst, L. Control of cell adhesion dynamics by Rap1 signaling. Curr. Opin. Cell Biol. 21, 684–693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takai, Y. & Nakanishi, H. Nectin and afadin: novel organizers of intercellular junctions. J. Cell Sci. 116, 17–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Belvindrah, R., Graus-Porta, D., Goebbels, S., Nave, K.A. & Muller, U. Beta1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex. J. Neurosci. 27, 13854–13865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rieger, S., Senghaas, N., Walch, A. & Koster, R.W. Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol. 7, e1000240 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Taniguchi, H., Kawauchi, D., Nishida, K. & Murakami, F. Classic cadherins regulate tangential migration of precerebellar neurons in the caudal hindbrain. Development 133, 1923–1931 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Davis, M.A., Ireton, R.C. & Reynolds, A.B. A core function for p120-catenin in cadherin turnover. J. Cell Biol. 163, 525–534 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuroda, S. et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin–mediated cell-cell adhesion. Science 281, 832–835 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Arthur, W.T., Quilliam, L.A. & Cooper, J.A. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. J. Cell Biol. 167, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moskalenko, S. et al. The exocyst is a Ral effector complex. Nat. Cell Biol. 4, 66–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kadowaki, M. et al. N-cadherin mediates cortical organization in the mouse brain. Dev. Biol. 304, 22–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, X., Kojima, S., Borisy, G.G. & Green, K.J. p120 catenin associates with kinesin and facilitates the transport of cadherin-catenin complexes to intercellular junctions. J. Cell Biol. 163, 547–557 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ballif, B.A. et al. Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. Curr. Biol. 14, 606–610 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Jossin, Y., Gui, L. & Goffinet, A.M. Processing of Reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons. J. Neurosci. 27, 4243–4252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uchida, T. et al. Downregulation of functional Reelin receptors in projection neurons implies that primary Reelin action occurs at early/premigratory stages. J. Neurosci. 29, 10653–10662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morimura, T. & Ogawa, M. Relative importance of the tyrosine phosphorylation sites of Disabled-1 to the transmission of Reelin signaling. Brain Res. 1304, 26–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Simó, S., Jossin, Y. & Cooper, J.A. Cullin 5 regulates cortical layering by modulating the speed and duration of Dab1-dependent neuronal migration. J. Neurosci. 30, 5668–5676 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rice, D.S. et al. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729 (1998).

    CAS  PubMed  Google Scholar 

  35. Arnaud, L., Ballif, B.A. & Cooper, J.A. Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell. Biol. 23, 9293–9302 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beffert, U. et al. Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277, 49958–49964 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Jossin, Y. & Goffinet, A.M. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol. Cell. Biol. 27, 7113–7124 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ogawa, M. et al. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Goffinet, A.M. An early development defect in the cerebral cortex of the reeler mouse. A morphological study leading to a hypothesis concerning the action of the mutant gene. Anat. Embryol. (Berl.) 157, 205–216 (1979).

    Article  CAS  Google Scholar 

  40. Elias, L.A., Wang, D.D. & Kriegstein, A.R. Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448, 901–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Kawauchi, T. et al. Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 67, 588–602 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451–1455 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, J. et al. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev. Cell 18, 472–479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, X., Chrisman, H. & Weijer, C.J. PDGF signaling controls the migration of mesoderm cells during chick gastrulation by regulating N-cadherin expression. Development 135, 3521–3530 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Fulga, T.A. & Rorth, P. Invasive cell migration is initiated by guided growth of long cellular extensions. Nat. Cell Biol. 4, 715–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Franco, S.J., Martinez-Garay, I., Gil-Sanz, C., Harkins-Perry, S.R. & Muller, U. Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69, 482–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, C. et al. Ras is required for the cyclic AMP–dependent activation of Rap1 via Epac2. Mol. Cell. Biol. 28, 7109–7125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tabata, H. & Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103, 865–872 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Jossin, Y., Ogawa, M., Metin, C., Tissir, F. & Goffinet, A.M. Inhibition of SRC family kinases and non-classical protein kinases C induce a reeler-like malformation of cortical plate development. J. Neurosci. 23, 9953–9959 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qin, Y., Capaldo, C., Gumbiner, B.M. & Macara, I.G. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol. 171, 1061–1071 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Buck for the use of her confocal microscope, W. Arthur, R. Hevner, F. Polleux, K. Sanada, L.-H. Tsai, V. Vasioukhin, A. Puschel, Y. Gotoh, P. Phelps and M. White for reagents, J. Wang and E. Jhingan for technical assistance, A. Goffinet and F. Polleux for helpful discussions, and V. Vasioukhin, S. Parkhurst, B. Edgar and S. Simo for comments on the manuscript. This work was supported by the Fonds National de la Recherche Scientifique, Belgium (Y.J.), the European Commission under the Marie Curie International Outgoing Fellowship Program through the Université Catholique de Louvain (Y.J.) and National Institutes of Health grant CA41072 (J.A.C.).

Author information

Authors and Affiliations

Authors

Contributions

Y.J. performed the experiments. Y.J. and J.A.C. conceived the experiments and wrote the paper.

Corresponding authors

Correspondence to Yves Jossin or Jonathan A Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 3046 kb)

Supplementary Movie 1

Movement of multipolar cells in the MMZ of control, Rap1GAP and NCadDN electroporated cortex. Cortices were electroporated at E14.5 and slices were prepared at E16.5. One frame per 30 min. Playback speed 7 frames/s. Compressed z-stacks spanning around 90 μm of cortical depth. Height of image is approximately 100 μm. (MOV 1754 kb)

Supplementary Movie 2

Movement of bipolar cells in the RMZ of control, Rap1GAP and NCadDN electroporated cortex. Cortices were electroporated at E14.5 and slices were prepared at E16.5. One frame per 30 min. Playback speed 7 frames/s. Compressed z-stacks spanning around 90 μm of cortical depth. Height of image is approximately 100 μm. (MOV 2025 kb)

Supplementary Movie 3

Movement of control, Rap1GAP and NCadDN neurons migrating in vitro in lattice culture. One frame per 5 min. Playback speed 7 frames/s. Superimposed phase contrast and GFP epifluorescence images. (MOV 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jossin, Y., Cooper, J. Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat Neurosci 14, 697–703 (2011). https://doi.org/10.1038/nn.2816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing