Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight

Abstract

Studies of the endocannabinoid system in the CNS have been mostly focused on endocannabinoid receptors and inactivating mechanisms. Until recently, very little was known about the role of biosynthetic enzymes in endocannabinoid signaling. New data from the recent development of pharmacological and genetic tools for the study of these enzymes point to their fundamental role in determining where and when endocannabinoids function, and raise the possibility of new intriguing and previously unsuspected concepts in the general strategy of endocannabinoid signaling. However, even with these new tools, the cross-talk between anandamide and 2-arachidonoylglycerol biosynthesis makes it difficult to dissect one from the other, and data will need to be interpreted with this in mind.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocannabinoid metabolism in synaptic plasticity and neuroinflammation.

Similar content being viewed by others

References

  1. Devane, W.A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov. 7, 438–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Leung, D., Saghatelian, A., Simon, G.M. & Cravatt, B.F. Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 45, 4720–4726 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Simon, G.M. & Cravatt, B.F. Characterization of mice lacking candidate N-acyl ethanolamine biosynthetic enzymes provides evidence for multiple pathways that contribute to endocannabinoid production in vivo. Mol. Biosyst. 6, 1411–1418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van der Stelt, M. et al. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J. 24, 3026–3037 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Starowicz, K., Nigam, S. & Di Marzo, V. Biochemistry and pharmacology of endovanilloids. Pharmacol. Ther. 114, 13–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Nyilas, R. et al. Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals. J. Neurosci. 28, 1058–1063 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egertová, M., Simon, G.M., Cravatt, B.F. & Elphick, M.R. Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: a new perspective on N-acylethanolamines as neural signaling molecules. J. Comp. Neurol. 506, 604–615 (2008).

    Article  PubMed  Google Scholar 

  9. Cristino, L. et al. Immunohistochemical localization of anabolic and catabolic enzymes for anandamide and other putative endovanilloids in the hippocampus and cerebellar cortex of the mouse brain. Neuroscience 151, 955–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Suárez, J. et al. Immunohistochemical description of the endogenous cannabinoid system in the rat cerebellum and functionally related nuclei. J. Comp. Neurol. 509, 400–421 (2008).

    Article  PubMed  Google Scholar 

  11. Cristino, L. et al. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139, 1405–1415 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163, 463–468 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katona, I. et al. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 26, 5628–5637 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshida, T. et al. Localization of diacylglycerol lipase-α around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J. Neurosci. 26, 4740–4751 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nomura, S., Fukaya, M., Tsujioka, T., Wu, D. & Watanabe, M. Phospholipase Cβ3 is distributed in both somatodendritic and axonal compartments and localized around perisynapse and smooth endoplasmic reticulum in mouse Purkinje cell subsets. Eur. J. Neurosci. 25, 659–672 (2007).

    Article  PubMed  Google Scholar 

  16. Maejima, T. et al. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cβ4 signaling cascade in the cerebellum. J. Neurosci. 25, 6826–6835 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukaya, M. et al. Predominant expression of phospholipase Cbeta1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. Eur. J. Neurosci. 28, 1744–1759 (2008).

    Article  PubMed  Google Scholar 

  18. Lafourcade, M. et al. Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS ONE 2, e709 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Roloff, A.M., Anderson, G.R., Martemyanov, K.A. & Thayer, S.A. Homer 1a gates the induction mechanism for endocannabinoid-mediated synaptic plasticity. J. Neurosci. 30, 3072–3081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marrs, W.R. et al. The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat. Neurosci. 13, 951–957 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marinelli, S. et al. The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J. Neurosci. 28, 13532–13541 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marinelli, S., Pacioni, S., Cannich, A., Marsicano, G. & Bacci, A. Self-modulation of neocortical pyramidal neurons by endocannabinoids. Nat. Neurosci. 12, 1488–1490 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Tanimura, A. et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. Neuron 65, 320–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Gao, Y. et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J. Neurosci. 30, 2017–2024 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nomura, D.K. et al. Monoacylglycerol lipase regulates 2-arachidonoylglycerol action and arachidonic acid levels. Bioorg. Med. Chem. Lett. 18, 5875–5878 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D'Asti, E. et al. Maternal dietary fat determines metabolic profile and the magnitude of endocannabinoid inhibition of the stress response in neonatal rat offspring. Endocrinology 151, 1685–1694 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Wettschureck, N. et al. Forebrain-specific inactivation of Gq/G11 family G proteins results in age-dependent epilepsy and impaired endocannabinoid formation. Mol. Cell. Biol. 26, 5888–5894 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harkany, T. et al. The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol. Sci. 28, 83–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Goncalves, M.B. et al. A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol. Cell. Neurosci. 38, 526–536 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bisogno, T. et al. Development of the first potent and specific inhibitors of endocannabinoid biosynthesis. Biochim. Biophys. Acta 1761, 205–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Bisogno, T. et al. Synthesis and pharmacological activity of a potent inhibitor of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol. ChemMedChem 4, 946–950 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Ortar, G. et al. Tetrahydrolipstatin analogues as modulators of endocannabinoid 2-arachidonoylglycerol metabolism. J. Med. Chem. 51, 6970–6979 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Straiker, A. et al. Monoacylglycerol lipase limits the duration of endocannabinoid-mediated depolarization-induced suppression of excitation in autaptic hippocampal neurons. Mol. Pharmacol. 76, 1220–1227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Melis, M. et al. Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. J. Neurosci. 24, 10707–10715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Szabo, B. et al. Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J. Physiol. (Lond.) 577, 263–280 (2006).

    Article  CAS  Google Scholar 

  36. Hashimotodani, Y., Ohno-Shosaku, T., Maejima, T., Fukami, K. & Kano, M. Pharmacological evidence for the involvement of diacylglycerol lipase in depolarization-induced endocannabinoid release. Neuropharmacology 54, 58–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Hashimotodani, Y., Ohno-Shosaku, T. & Kano, M. Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J. Neurosci. 27, 1211–1219 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chevaleyre, V. & Castillo, P.E. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38, 461–472 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Edwards, D.A., Kim, J. & Alger, B.E. Multiple mechanisms of endocannabinoid response initiation in hippocampus. J. Neurophysiol. 95, 67–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Min, R. et al. Diacylglycerol lipase is not involved in depolarization-induced suppression of inhibition at unitary inhibitory connections in mouse hippocampus. J. Neurosci. 30, 2710–2715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edwards, D.A., Zhang, L. & Alger, B.E. Metaplastic control of the endocannabinoid system at inhibitory synapses in hippocampus. Proc. Natl. Acad. Sci. USA 105, 8142–8147 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Safo, P.K. & Regehr, W.G. Endocannabinoids control the induction of cerebellar LTD. Neuron 48, 647–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Oddi, S. et al. Evidence for the intracellular accumulation of anandamide in adiposomes. Cell. Mol. Life Sci. 65, 840–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Maccarrone, M. et al. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat. Neurosci. 11, 152–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Schlosburg, J.E. et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat. Neurosci. 13, 1113–1119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, J. & Alger, B.E. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat. Neurosci. 13, 592–600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gomez, O. et al. The constitutive production of the endocannabinoid 2-arachidonoylglycerol participates in oligodendrocyte differentiation. Glia 58, 1913–1927 (2010).

    Article  PubMed  Google Scholar 

  48. Maione, S. et al. Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J. Pharmacol. Exp. Ther. 316, 969–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Melis, M. et al. Protective activation of the endocannabinoid system during ischemia in dopamine neurons. Neurobiol. Dis. 24, 15–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Hoover, H.S., Blankman, J.L., Niessen, S. & Cravatt, B.F. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg. Med. Chem. Lett. 18, 5838–5841 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks T. Bisogno and S. Petrosino for their help. Support from the US National Institutes of Health (grant DA-009789) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Marzo.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Marzo, V. Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight. Nat Neurosci 14, 9–15 (2011). https://doi.org/10.1038/nn.2720

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing