Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Principles governing recruitment of motoneurons during swimming in zebrafish

Subjects

Abstract

Locomotor movements are coordinated by a network of neurons that produces sequential muscle activation. Different motoneurons need to be recruited in an orderly manner to generate movement with appropriate speed and force. However, the mechanisms governing recruitment order have not been fully clarified. Using an in vitro juvenile/adult zebrafish brainstem-spinal cord preparation, we found that motoneurons were organized into four pools with specific topographic locations and were incrementally recruited to produce swimming at different frequencies. The threshold of recruitment was not dictated by the input resistance of motoneurons, but was instead set by a combination of specific biophysical properties and the strength of the synaptic currents. Our results provide insights into the cellular and synaptic computations governing recruitment of motoneurons during locomotion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic activity of identified motoneurons.
Figure 2: Synaptic activity of the four different pools of motoneurons during locomotion.
Figure 3: Relationship between the motoneuron membrane potential oscillation amplitude and the swimming frequency.
Figure 4: Quantification of parameters important for the recruitment of the different pools of motoneurons.
Figure 5: Excitatory and inhibitory synaptic currents in the four pools of motoneurons.
Figure 6: The amplitude of synaptic currents is correlated with the order of recruitment of motoneurons.
Figure 7: Characteristic intrinsic properties of the four pools of motoneurons.

Similar content being viewed by others

References

  1. Cope, T.C. & Pinter, M.J. The size principle: still working after all these years. News Physiol. Sci. 10, 280–286 (1995).

    Google Scholar 

  2. Henneman, E. Relation between size of neurons and their susceptibility to discharge. Science 126, 1345–1347 (1957).

    Article  CAS  Google Scholar 

  3. Henneman, E. & Mendell, L.M. Functional organization of motoneuron pool and its inputs. in Handbook of Physiology, Sect. 1, Vol. 2 (ed. Brooks, V.E.) 423–507 (American Physiological Society, Bethesda, Maryland, 1981).

  4. Henneman, E., Somjen, G. & Carpenter, D.O. Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28, 560–580 (1965).

    Article  CAS  Google Scholar 

  5. Mendell, L.M. The size principle: a rule describing the recruitment of motoneurons. J. Neurophysiol. 93, 3024–3026 (2005).

    Article  Google Scholar 

  6. Kernell, D. & Zwaagstra, B. Input conductance axonal conduction velocity and cell size among hindlimb motoneurones of the cat. Brain Res. 204, 311–326 (1981).

    Article  CAS  Google Scholar 

  7. Binder, M.D., Heckman, C.J. & Powers, R.K. Relative strengths and distributions of different sources of synaptic input to the motoneurone pool: implications for motor unit recruitment. Adv. Exp. Med. Biol. 508, 207–212 (2002).

    Article  Google Scholar 

  8. Heckman, C.J. & Binder, M.D. Analysis of effective synaptic currents generated by homonymous Ia afferent fibers in motoneurons of the cat. J. Neurophysiol. 60, 1946–1966 (1988).

    Article  CAS  Google Scholar 

  9. Enoka, R.M. & Stuart, D.G. Henneman's 'size principle': current issues. Trends Neurosci. 7, 226–228 (1984).

    Article  Google Scholar 

  10. Gustafsson, B. & Pinter, M.J. An investigation of threshold properties among cat spinal alpha-motoneurones. J. Physiol. (Lond.) 357, 453–483 (1984).

    Article  CAS  Google Scholar 

  11. McLean, D.L., Fan, J., Higashijima, S., Hale, M.E. & Fetcho, J.R. A topographic map of recruitment in spinal cord. Nature 446, 71–75 (2007).

    Article  CAS  Google Scholar 

  12. El Manira, A. & Grillner, S. Switching gears in the spinal cord. Nat. Neurosci. 11, 1367–1368 (2008).

    Article  CAS  Google Scholar 

  13. McLean, D.L., Masino, M.A., Koh, I.Y., Lindquist, W.B. & Fetcho, J.R. Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat. Neurosci. 11, 1419–1429 (2008).

    Article  CAS  Google Scholar 

  14. Fetcho, J.R. & McLean, D.L. Some principles of organization of spinal neurons underlying locomotion in zebrafish and their implications. Ann. NY Acad. Sci. 1198, 94–104 (2010).

    Article  Google Scholar 

  15. McLean, D.L. & Fetcho, J.R. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones. J. Neurosci. 29, 13566–13577 (2009).

    Article  CAS  Google Scholar 

  16. Lewis, K.E. & Eisen, J.S. From cells to circuits: development of the zebrafish spinal cord. Prog. Neurobiol. 69, 419–449 (2003).

    Article  CAS  Google Scholar 

  17. Myers, P.Z. Spinal motoneurons of the larval zebrafish. J. Comp. Neurol. 236, 555–561 (1985).

    Article  CAS  Google Scholar 

  18. van Raamsdonk, W., Mos, W., Smit-Onel, M.J., van der Laarse, W.J. & Fehres, R. The development of the spinal motor column in relation to the myotomal muscle fibers in the zebrafish (Brachydanio rerio). I. Posthatching development. Anat. Embryol. (Berl.) 167, 125–139 (1983).

    Article  CAS  Google Scholar 

  19. Westerfield, M., McMurray, J.V. & Eisen, J.S. Identified motoneurons and their innervation of axial muscles in the zebrafish. J. Neurosci. 6, 2267–2277 (1986).

    Article  CAS  Google Scholar 

  20. Buss, R.R. & Drapeau, P. Physiological properties of zebrafish embryonic red and white muscle fibers during early development. J. Neurophysiol. 84, 1545–1557 (2000).

    Article  CAS  Google Scholar 

  21. van Raamsdonk, W., Pool, C.W. & te Kronnie, G. Differentiation of muscle fiber types in the teleost Brachydanio rerio. Anat. Embryol. (Berl.) 153, 137–155 (1978).

    Article  CAS  Google Scholar 

  22. van Raamsdonk, W., van't Veer, L., Veeken, K., Heyting, C. & Pool, C.W. Differentiation of muscle fiber types in the teleost Brachydanio rerio, the zebrafish. Posthatching development. Anat. Embryol. (Berl.) 164, 51–62 (1982).

    Article  CAS  Google Scholar 

  23. Bone, Q., Kiceniuk, J. & Jones, D.R. On the role of the different fibre types in fish myotomes at intermediate swimming speeds. Fishery Bull. 76, 691–699 (1978).

    Google Scholar 

  24. Johnston, I.A. On the design of fish myotomal muscles. Mar. Freshw. Behav. Physiol. 9, 83–98 (1983).

    Article  Google Scholar 

  25. Gabriel, J.P. et al. Locomotor pattern in the adult zebrafish spinal cord in vitro. J. Neurophysiol. 99, 37–48 (2008).

    Article  CAS  Google Scholar 

  26. Liu, D.W. & Westerfield, M. Function of identified motoneurones and co-ordination of primary and secondary motor systems during zebra fish swimming. J. Physiol. (Lond.) 403, 73–89 (1988).

    Article  CAS  Google Scholar 

  27. Gabriel, J.P. et al. Serotonergic modulation of locomotion in zebrafish: endogenous release and synaptic mechanisms. J. Neurosci. 29, 10387–10395 (2009).

    Article  CAS  Google Scholar 

  28. Bhatt, D.H., McLean, D.L., Hale, M.E. & Fetcho, J.R. Grading movement strength by changes in firing intensity versus recruitment of spinal interneurons. Neuron 53, 91–102 (2007).

    Article  CAS  Google Scholar 

  29. Heckman, C.J., Lee, R.H. & Brownstone, R.M. Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends Neurosci. 26, 688–695 (2003).

    Article  CAS  Google Scholar 

  30. Johnston, D. & Narayanan, R. Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci. 31, 309–316 (2008).

    Article  CAS  Google Scholar 

  31. Heckman, C.J., Hyngstrom, A.S. & Johnson, M.D. Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibition. J. Physiol. (Lond.) 586, 1225–1231 (2008).

    Article  CAS  Google Scholar 

  32. El Manira, A. & Kyriakatos, A. The role of endocannabinoid signaling in motor control. Physiology (Bethesda) 25, 230–238 (2010).

    CAS  Google Scholar 

  33. Nanou, E. et al. Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission. Proc. Natl. Acad. Sci. USA 105, 20941–20946 (2008).

    Article  CAS  Google Scholar 

  34. McLean, D.L., Merrywest, S.D. & Sillar, K.T. The development of neuromodulatory systems and the maturation of motor patterns in amphibian tadpoles. Brain Res. Bull. 53, 595–603 (2000).

    Article  CAS  Google Scholar 

  35. Sillar, K.T., Reith, C.A. & McDearmid, J.R. Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae. Ann. NY Acad. Sci. 860, 318–332 (1998).

    Article  CAS  Google Scholar 

  36. Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol. 11, 43–49 (2001).

    Article  CAS  Google Scholar 

  37. Dasen, J.S., De Camilli, A., Wang, B., Tucker, P.W. & Jessell, T.M. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell 134, 304–316 (2008).

    Article  CAS  Google Scholar 

  38. Goulding, M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507–518 (2009).

    Article  CAS  Google Scholar 

  39. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  Google Scholar 

  40. Dasen, J.S. & Jessell, T.M. Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 88, 169–200 (2009).

    Article  CAS  Google Scholar 

  41. Dasen, J.S., Tice, B.C., Brenner-Morton, S. & Jessell, T.M. A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123, 477–491 (2005).

    Article  CAS  Google Scholar 

  42. Vallstedt, A. et al. Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron 31, 743–755 (2001).

    Article  CAS  Google Scholar 

  43. Cheesman, S.E., Layden, M.J., Von Ohlen, T., Doe, C.Q. & Eisen, J.S. Zebrafish and fly Nkx6 proteins have similar CNS expression patterns and regulate motoneuron formation. Development 131, 5221–5232 (2004).

    Article  CAS  Google Scholar 

  44. Hutchinson, S.A., Cheesman, S.E., Hale, L.A., Boone, J.Q. & Eisen, J.S. Nkx6 proteins specify one zebrafish primary motoneuron subtype by regulating late islet1 expression. Development 134, 1671–1677 (2007).

    Article  CAS  Google Scholar 

  45. Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of the Zebrafish (Danio rerio) (University of Oregon Press, Eugene, Oregon, USA, 2000).

Download references

Acknowledgements

We thank K. Dougherty, R. Hill, S. Grillner and D. McLean for comments and critical discussion of this manuscript. This work was funded by a grant from the Swedish Research Council, European Commission (FP7, Spinal Cord Repair), Söderberg Foundation and Karolinska Institutet. J.P.G. and J.A. received post-doctoral fellowships from the German Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.P.G., J.A., K.A. and A.E.M. conceived the project and planned the experiments. J.P.G., J.A., K.A. and R.M. performed the experiments. All of the authors contributed to the analysis of the data, preparation of the figures and the writing of the manuscript.

Corresponding author

Correspondence to Abdeljabbar El Manira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, J., Ausborn, J., Ampatzis, K. et al. Principles governing recruitment of motoneurons during swimming in zebrafish. Nat Neurosci 14, 93–99 (2011). https://doi.org/10.1038/nn.2704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing