Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Postsynaptic TRPV1 triggers cell type–specific long-term depression in the nucleus accumbens

Abstract

Synaptic modifications in the nucleus accumbens (NAc) are important for adaptive and pathological reward-dependent learning. Medium spiny neurons (MSNs), the major cell type in the NAc, participate in two parallel circuits that subserve distinct behavioral functions, yet little is known about differences in their electrophysiological and synaptic properties. Using bacterial artificial chromosome transgenic mice, we found that synaptic activation of group I metabotropic glutamate receptors in NAc MSNs in the indirect, but not direct, pathway led to the production of endocannabinoids, which activated presynaptic CB1 receptors to trigger endocannabinoid-mediated long-term depression (eCB-LTD) as well as postsynaptic transient receptor potential vanilloid 1 (TRPV1) channels to trigger a form of LTD resulting from endocytosis of AMPA receptors. These results reveal a previously unknown action of TRPV1 channels and indicate that the postsynaptic generation of endocannabinoids can modulate synaptic strength in a cell type–specific fashion by activating distinct pre- and postsynaptic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrophysiological properties of direct (D2+) and indirect (D2−) pathway MSNs in the NAc core.
Figure 2: D2+ MSNs but not D2– NAc MSNs show mGluR5-dependent LTD.
Figure 3: D2+ MSNs show forms of LTD that are dependent and independent of CB1 receptors and RIM1α.
Figure 4: TRPV1 channels trigger LTD at synapses on D2+ NAc MSNs.
Figure 5: Trpv1−/− mice lack CB1 receptor-independent LFS LTD at synapses on D2+ NAc MSNs.
Figure 6: Postsynaptic TRPV1 channels trigger LTD in D2+ NAc MSNs.
Figure 7: Effects of in vivo cocaine administration on LFS LTD in NAc D2+ MSNs and locomotor behavior in Trpv1−/− mice.

Similar content being viewed by others

References

  1. Sesack, S.R. & Grace, A.A. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35, 27–47 (2010).

    Article  Google Scholar 

  2. Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 10, 561–572 (2009).

    Article  CAS  Google Scholar 

  3. Kauer, J.A. & Malenka, R.C. Synaptic plasticity and addiction. Nat. Rev. Neurosci. 8, 844–858 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  4. Conrad, K.L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  5. Kasanetz, F. et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328, 1709–1712 (2010).

    Article  CAS  Google Scholar 

  6. Kreitzer, A.C. & Malenka, R.C. Striatal plasticity and basal ganglia circuit function. Neuron 60, 543–554 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  7. Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66, 896–907 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  8. Kravitz, A.V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  9. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  Google Scholar 

  10. Caterina, M.J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  11. Kauer, J.A. & Gibson, H.E. Hot flash: TRPV channels in the brain. Trends Neurosci. 32, 215–224 (2009).

    Article  CAS  Google Scholar 

  12. Ramsey, I.S., Delling, M. & Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  13. Zygmunt, P.M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).

    Article  CAS  Google Scholar 

  14. Gibson, H.E., Edwards, J.G., Page, R.S., Van Hook, M.J. & Kauer, J.A. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57, 746–759 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  15. Maione, S. et al. TRPV1 channels control synaptic plasticity in the developing superior colliculus. J. Physiol. (Lond.) 587, 2521–2535 (2009).

    Article  CAS  Google Scholar 

  16. Kreitzer, A.C. & Malenka, R.C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  17. Robbe, D., Kopf, M., Remaury, A., Bockaert, J. & Manzoni, O.J. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 99, 8384–8388 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  18. Heifets, B.D. & Castillo, P.E. Endocannabinoid signaling and long-term synaptic plasticity. Annu. Rev. Physiol. 71, 283–306 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  19. Schoch, S. et al. Nature 415, 321–326 (2002).

    Article  CAS  Google Scholar 

  20. Hoffman, A.F., Oz, M., Caulder, T. & Lupica, C.R. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci. 23, 4815–4820 (2003).

    Article  CAS  Google Scholar 

  21. Micale, V. et al. Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels. Neuropsychopharmacology 34, 593–606 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  22. Roberts, J.C., Davis, J.B. & Benham, C.D. [3H]Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res. 995, 176–183 (2004).

    Article  CAS  Google Scholar 

  23. Starowicz, K., Cristino, L. & Di Marzo, V. TRPV1 receptors in the central nervous system: potential for previously unforeseen therapeutic applications. Curr. Pharm. Des. 14, 42–54 (2008).

    Article  CAS  Google Scholar 

  24. Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  PubMed Central  Google Scholar 

  25. Fourgeaud, L. et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci. 24, 6939–6945 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  26. Mato, S. et al. A single in-vivo exposure to Delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat. Neurosci. 7, 585–586 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  27. Malenka, R.C. & Bear, M.F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  28. Vezina, P. & Leyton, M. Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology 56 (Suppl 1): 160–168 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  29. Wettschureck, N. et al. Forebrain-specific inactivation of Gq/G11 family G proteins results in age-dependent epilepsy and impaired endocannabinoid formation. Mol. Cell. Biol. 26, 5888–5894 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  30. van der Stelt, M. et al. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J. 24, 3026–3037 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  31. Maccarrone, M. et al. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat. Neurosci. 11, 152–159 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  32. Chavez, A.E., Chiu, C.Q. & Castillo, P.E. TRPV1 activation by endogenous anandamide triggers postsynaptic LTD in dentate gyrus. Nat. Neurosci. advanced online publication, doi:10.1038/nn.2684 (14 November 2010).

  33. Marsch, R. et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor–deficient mice. J. Neurosci. 27, 832–839 (2007).

    Article  CAS  Google Scholar 

  34. de Lago, E., de Miguel, R., Lastres-Becker, I., Ramos, J.A. & Fernandez-Ruiz, J. Involvement of vanilloid-like receptors in the effects of anandamide on motor behavior and nigrostriatal dopaminergic activity: in vivo and in vitro evidence. Brain Res. 1007, 152–159 (2004).

    Article  CAS  Google Scholar 

  35. Di Marzo, V. et al. Hypolocomotor effects in rats of capsaicin and two long chain capsaicin homologues. Eur. J. Pharmacol. 420, 123–131 (2001).

    Article  CAS  Google Scholar 

  36. Lee, J., Di Marzo, V. & Brotchie, J.M. A role for vanilloid receptor 1 (TRPV1) and endocannabinnoid signaling in the regulation of spontaneous and L-DOPA induced locomotion in normal and reserpine-treated rats. Neuropharmacology 51, 557–565 (2006).

    Article  CAS  Google Scholar 

  37. Tzavara, E.T. et al. Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergia-related hyperactivity: therapeutic implications. Biol. Psychiatry 59, 508–515 (2006).

    Article  CAS  Google Scholar 

  38. Szumlinski, K.K., Kalivas, P.W. & Worley, P.F. Homer proteins: implications for neuropsychiatric disorders. Curr. Opin. Neurobiol. 16, 251–257 (2006).

    Article  CAS  Google Scholar 

  39. Thomas, M.J., Beurrier, C., Bonci, A. & Malenka, R.C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 1217–1223 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  40. Kourrich, S., Rothwell, P.E., Klug, J.R. & Thomas, M.J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci. 27, 7921–7928 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  41. Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).

    Article  CAS  Google Scholar 

  42. McFarland, K. & Kalivas, P.W. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci. 21, 8655–8663 (2001).

    Article  CAS  Google Scholar 

  43. Tang, X.C., McFarland, K., Cagle, S. & Kalivas, P.W. Cocaine-induced reinstatement requires endogenous stimulation of mu-opioid receptors in the ventral pallidum. J. Neurosci. 25, 4512–4520 (2005).

    Article  CAS  Google Scholar 

  44. Torregrossa, M.M., Tang, X.C. & Kalivas, P.W. The glutamatergic projection from the prefrontal cortex to the nucleus accumbens core is required for cocaine-induced decreases in ventral pallidal GABA. Neurosci. Lett. 438, 142–145 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  45. Durieux, P.F. et al. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat. Neurosci. 12, 393–395 (2009).

    Article  CAS  Google Scholar 

  46. Grueter, B.A. et al. Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5–induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J. Neurosci. 26, 3210–3219 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Malenka lab for their comments. This work was supported by grants from the National Institute on Drug Abuse (DA009264, DA008227 to R.C.M.; 5F32DA023741-2 to B.A.G.).

Author information

Authors and Affiliations

Authors

Contributions

B.A.G., G.B. and R.C.M. designed the experiments, interpreted the results and wrote the paper. B.A.G. and G.B. performed all of the experiments and analyzed the results.

Corresponding author

Correspondence to Robert C Malenka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 693 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grueter, B., Brasnjo, G. & Malenka, R. Postsynaptic TRPV1 triggers cell type–specific long-term depression in the nucleus accumbens. Nat Neurosci 13, 1519–1525 (2010). https://doi.org/10.1038/nn.2685

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing