Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thalamic synchrony and the adaptive gating of information flow to cortex

Abstract

Although it has long been posited that sensory adaptation serves to enhance information flow in sensory pathways, the neural basis remains elusive. Simultaneous single-unit recordings in the thalamus and cortex in anesthetized rats showed that adaptation differentially influenced thalamus and cortex in a manner that fundamentally changed the nature of information conveyed about vibrissa motion. Using an ideal observer of cortical activity, we found that performance in detecting vibrissal deflections degraded with adaptation while performance in discriminating among vibrissal deflections of different velocities was enhanced, a trend not observed in thalamus. Analysis of simultaneously recorded thalamic neurons did reveal, however, an analogous adaptive change in thalamic synchrony that mirrored the cortical response. An integrate-and-fire model using experimentally measured thalamic input reproduced the observed transformations. The results here suggest a shift in coding strategy with adaptation that directly controls information relayed to cortex, which could have implications for encoding velocity signatures of textures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Statistical properties of cortical response adapt to vibrissa deflections.
Figure 2: Adaptation degrades stimulus detection for ideal observer of cortical activity.
Figure 3: Adaptation enhances cortical discriminability.
Figure 4: Cortical performance does not trivially mirror activity of thalamic projections.
Figure 5: Shift in discrimination performance is maintained in monosynaptically connected thalamocortical pairs.
Figure 6: Thalamic population synchrony is modulated by adaptation.
Figure 7: Thalamocortical network model predictions.

Similar content being viewed by others

References

  1. Ahissar, E., Sosnik, R. & Haidarliu, S. Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406, 302–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Chung, S., Li, X. & Nelson, S.B. Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34, 437–446 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Higley, M.J. & Contreras, D. Balanced excitation and inhibition determine spike timing during frequency adaptation. J. Neurosci. 26, 448–457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khatri, V., Hartings, J.A. & Simons, D.J. Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity. J. Neurophysiol. 92, 3244–3254 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Maravall, M., Petersen, R.S., Fairhall, A.L., Arabzadeh, E. & Diamond, M.E. Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol. 5, e19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fairhall, A.L., Lewen, G.D., Bialek, W. & de Ruyter van Steveninck, R.R. Efficiency and ambiguity in an adaptive neural code. Nature 412, 787–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Barlow, H. Possible principles underlying the transformation of sensory messages. in Sensory Communication (ed. Rosenblith, W.A.) 217–234 (MIT Press, 1961).

  8. Goble, A.K. & Hollins, M. Vibrotactile adaptation enhances frequency discrimination. J. Acoust. Soc. Am. 96, 771–780 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Goble, A.K. & Hollins, M. Vibrotactile adaptation enhances amplitude discrimination. J. Acoust. Soc. Am. 93, 418–424 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Tannan, V., Simons, S., Dennis, R.G. & Tommerdahl, M. Effects of adaptation on the capacity to differentiate simultaneously delivered dual-site vibrotactile stimuli. Brain Res. 1186, 164–170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crick, F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. USA 81, 4586–4590 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steriade, M., McCormick, D.A. & Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Lesica, N.A. & Stanley, G.B. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J. Neurosci. 24, 10731–10740 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Swadlow, H.A. & Gusev, A.G. The impact of 'bursting' thalamic impulses at a neocortical synapse. Nat. Neurosci. 4, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Usrey, W.M., Alonso, J.-M. & Reid, R.C. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci. 20, 5461–5467 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roy, S.A. & Alloway, K.D. Coincidence detection or temporal integration? What the neurons in somatosensory cortex are doing. J. Neurosci. 21, 2462–2473 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinto, D.J., Brumberg, J.C. & Simons, D.J. Circuit dynamics and coding strategies in rodent somatosensory cortex. J. Neurophysiol. 83, 1158–1166 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Temereanca, S., Brown, E.N. & Simons, D.J. Rapid changes in thalamic firing synchrony during repetitive whisker stimulation. J. Neurosci. 28, 11153–11164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gabernet, L., Jadhav, S.P., Feldman, D.E., Carandini, M. & Scanziani, M. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stüttgen, M.C. & Schwarz, C. Psychophysical and neurometric detection performance under stimulus uncertainty. Nat. Neurosci. 11, 1091–1099 (2008).

    Article  PubMed  Google Scholar 

  22. Ganmor, E., Katz, Y. & Lampl, I. Intensity-dependent adaptation of cortical and thalamic neurons is controlled by brainstem circuits of the sensory pathway. Neuron 66, 273–286 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Bruno, R.M. & Simons, D.J. Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J. Neurosci. 22, 10966–10975 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bruno, R.M. & Sakmann, B. Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 1622–1627 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Schneidman, E., Berry, M.J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, H.-P., Spencer, D., Fellous, J.-M. & Sejnowski, T.J. Synchrony of thalamocortical inputs maximizes cortical reliability. Science 328, 106–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heiss, J.E., Katz, Y., Ganmor, E. & Lampl, I. Shift in the balance between excitation and inhibition during sensory adaptation of S1 neurons. J. Neurosci. 28, 13320–13330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Womelsdorf, T., Fries, P., Mitra, P.P. & Desimone, R. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439, 733–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Butts, D.A. et al. Temporal precision in the neural code and the timescales of natural vision. Nature 449, 92–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Khatri, V., Bruno, R.M. & Simons, D.J. Stimulus-specific and stimulus-nonspecific firing synchrony and its modulation by sensory adaptation in the whisker-to-barrel pathway. J. Neurophysiol. 101, 2328–2338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hartings, J.A., Temereanca, S. & Simons, D.J. Processing of periodic whisker deflections by neurons in the ventroposterior medial and thalamic reticular nuclei. J. Neurophysiol. 90, 3087–3094 (2003).

    Article  PubMed  Google Scholar 

  32. Romo, R., Hernández, A., Zainos, A. & Salinas, E. Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38, 649–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Zohary, E., Shadlen, M.N. & Newsome, W.T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Carvell, G.E. & Simons, D.J. Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10, 2638–2648 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. von Heimendahl, M., Itskov, P.M., Arabzadeh, E. & Diamond, M.E. Neuronal activity in rat barrel cortex underlying texture discrimination. PLoS Biol. 5, e305 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ritt, J.T., Andermann, M.L. & Moore, C.I. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 57, 599–613 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolfe, J. et al. Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biol. 6, e215 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jadhav, S.P., Wolfe, J. & Feldman, D.E. Sparse temporal coding of elementary tactile features during active whisker sensation. Nat. Neurosci. 12, 792–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Berg, R.W. & Kleinfeld, D. Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J. Neurophysiol. 89, 104–117 (2003).

    Article  PubMed  Google Scholar 

  40. Moore, C.I., Nelson, S.B. & Sur, M. Dynamics of neuronal processing in rat somatosensory cortex. Trends Neurosci. 22, 513–520 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Mehta, S.B., Whitmer, D., Figueroa, R., Williams, B.A. & Kleinfeld, D. Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol. 5, e15 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Krupa, D.J., Matell, M.S., Brisben, A.J., Oliveira, L.M. & Nicolelis, M.A.L. Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J. Neurosci. 21, 5752–5763 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerdjikov, T.V., Bergner, C.G., Stüttgen, M.C., Waiblinger, C. & Schwarz, C. Discrimination of vibrotactile stimuli in the rat whisker system: behavior and neurometrics. Neuron 65, 530–540 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Jenks, R.A., Vaziri, A., Boloori, A.-R. & Stanley, G.B. Self-motion and the shaping of sensory signals. J. Neurophysiol. 103, 2195–2207 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes. Nat. Neurosci. 12, 1444–1449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stoelzel, C.R., Bereshpolova, Y. & Swadlow, H.A. Stability of thalamocortical synaptic transmission across awake brain states. J. Neurosci. 29, 6851–6859 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Castro-Alamancos, M.A. Role of thalamocortical sensory suppression during arousal: focusing sensory inputs in neocortex. J. Neurosci. 22, 9651–9655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. König, P., Engel, A.K. & Singer, W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19, 130–137 (1996).

    Article  PubMed  Google Scholar 

  49. Luna, R., Hernandez, A., Brody, C.D. & Romo, R. Neural codes for perceptual discrimination in primary somatosensory cortex. Nat. Neurosci. 8, 1210–1219 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Khatri, V. & Simons, D.J. Angularly nonspecific response suppression in rat barrel cortex. Cereb. Cortex 17, 599–609 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jose-Manuel Alonso for comments at various points of this work and Daniel Millard for assistance in calibration and testing of the piezoelectric stimulator. This work was supported by the US National Institutes of Health (R01NS48285).

Author information

Authors and Affiliations

Authors

Contributions

Q.W. and G.B.S. conceived the study. Q.W., R.M.W. and G.B.S. designed the experiments. Q.W. performed the experiments. Q.W. and G.B.S. analyzed the data, and Q.W., R.M.W. and G.B.S. wrote the paper.

Corresponding author

Correspondence to Garrett B Stanley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Notes 1–5 (PDF 3023 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Webber, R. & Stanley, G. Thalamic synchrony and the adaptive gating of information flow to cortex. Nat Neurosci 13, 1534–1541 (2010). https://doi.org/10.1038/nn.2670

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing