Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray

Abstract

A form of aversively motivated learning called fear conditioning occurs when a neutral conditioned stimulus is paired with an aversive unconditioned stimulus (UCS). UCS-evoked depolarization of amygdala neurons may instruct Hebbian plasticity that stores memories of the conditioned stimulus–unconditioned stimulus association, but the origin of UCS inputs to the amygdala is unknown. Theory and evidence suggest that instructive UCS inputs to the amygdala will be inhibited when the UCS is expected, but this has not been found during fear conditioning. We investigated neural pathways that relay information about the UCS to the amygdala by recording neurons in the amygdala and periaqueductal gray (PAG) of rats during fear conditioning. UCS-evoked responses in both amygdala and PAG were inhibited by expectation. Pharmacological inactivation of the PAG attenuated UCS-evoked responses in the amygdala and impaired acquisition of fear conditioning, indicating that PAG may be an important part of the pathway that relays instructive signals to the amygdala.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity of LAn neurons during acquisition of fear conditioning.
Figure 2: LAn/basal neurons responded more to unsignaled (unsig) than signaled (sig) shocks.
Figure 3: Attenuation of shock-evoked responding in LAn neurons by PAG inactivation.
Figure 4: Effects of PAG inactivation on fear conditioning.
Figure 5: Activity of PAG neurons during acquisition of fear conditioning.
Figure 6: PAG neurons responded more to unsignaled than to signaled shocks.

Similar content being viewed by others

References

  1. Maren, S. & Quirk, G.J. Neuronal signaling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).

    Article  CAS  Google Scholar 

  2. Blair, H.T., Schafe, G.E., Bauer, E.P., Rodrigues, S.M. & LeDoux, J.E. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8, 229–242 (2001).

    Article  CAS  Google Scholar 

  3. Lang, P.J. & Davis, M. Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog. Brain Res. 156, 3–29 (2006).

    Article  Google Scholar 

  4. Fanselow, M.S. & Poulos, A.M. The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56, 207–234 (2005).

    Article  Google Scholar 

  5. Sah, P., Westbrook, R.F. & Luthi, A. Fear conditioning and long-term potentiation in the amygdala: what really is the connection? Ann. NY Acad. Sci. 1129, 88–95 (2008).

    Article  CAS  Google Scholar 

  6. Rosenkranz, J.A. & Grace, A.A. Dopamine-mediated modulation of odour-evoked amygdala potentials during Pavlovian conditioning. Nature 417, 282–287 (2002).

    Article  CAS  Google Scholar 

  7. Collins, D.R. & Pare, D. Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(−). Learn. Mem. 7, 97–103 (2000).

    Article  CAS  Google Scholar 

  8. Goosens, K.A., Hobin, J.A. & Maren, S. Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias? Neuron 40, 1013–1022 (2003).

    Article  CAS  Google Scholar 

  9. Repa, J.C. et al. Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat. Neurosci. 4, 724–731 (2001).

    Article  CAS  Google Scholar 

  10. Quirk, G.J., Repa, C. & LeDoux, J.E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15, 1029–1039 (1995).

    Article  CAS  Google Scholar 

  11. Romanski, L.M., Clugnet, M.C., Bordi, F. & LeDoux, J.E. Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behav. Neurosci. 107, 444–450 (1993).

    Article  CAS  Google Scholar 

  12. Brunzell, D.H. & Kim, J.J. Fear conditioning to tone, but not to context, is attenuated by lesions of the insular cortex and posterior extension of the intralaminar complex in rats. Behav. Neurosci. 115, 365–375 (2001).

    Article  CAS  Google Scholar 

  13. Shi, C. & Davis, M. Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies. J. Neurosci. 19, 420–430 (1999).

    Article  CAS  Google Scholar 

  14. Lanuza, E., Nader, K. & Ledoux, J.E. Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning. Neuroscience 125, 305–315 (2004).

    Article  CAS  Google Scholar 

  15. Borszcz, G.S. Contribution of the ventromedial hypothalamus to generation of the affective dimension of pain. Pain 123, 155–168 (2006).

    Article  CAS  Google Scholar 

  16. Tang, J. et al. Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol. Pain 1, 6 (2005).

    Article  Google Scholar 

  17. Rescorla, R.A. & Wagner, A.R. A theory of pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. in Classical Conditioning II: Current Research and Theory (eds. Black, A.H. & Prokasy, W.F.) (Appleton-Century-Crofts, New York, 1972).

    Google Scholar 

  18. Fanselow, M.S. Pavlovian conditioning, negative feedback and blocking: mechanisms that regulate association formation. Neuron 20, 625–627 (1998).

    Article  CAS  Google Scholar 

  19. Bolles, R.C. & Fanselow, M.S. A perceptual-defensive-recuperative model of fear and pain. Behav. Brain Sci. 3, 291–323 (1980).

    Article  Google Scholar 

  20. McNally, G.P. & Westbrook, R.F. Predicting danger: the nature, consequences and neural mechanisms of predictive fear learning. Learn. Mem. 13, 245–253 (2006).

    Article  Google Scholar 

  21. McNally, G.P. & Cole, S. Opioid receptors in the midbrain periaqueductal gray regulate prediction errors during Pavlovian fear conditioning. Behav. Neurosci. 120, 313–323 (2006).

    Article  CAS  Google Scholar 

  22. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  Google Scholar 

  23. Thompson, R.F., Thompson, J.K., Kim, J.J., Krupa, D.J. & Shinkman, P.G. The nature of reinforcement in cerebellar learning. Neurobiol. Learn. Mem. 70, 150–176 (1998).

    Article  CAS  Google Scholar 

  24. Knudsen, E.I. Instructed learning in the auditory localization pathway of the barn owl. Nature 417, 322–328 (2002).

    Article  CAS  Google Scholar 

  25. Herry, C. et al. Processing of temporal unpredictability in human and animal amygdala. J. Neurosci. 27, 5958–5966 (2007).

    Article  CAS  Google Scholar 

  26. Yacubian, J. et al. Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J. Neurosci. 26, 9530–9537 (2006).

    Article  CAS  Google Scholar 

  27. Belova, M.A., Paton, J.J., Morrison, S.E. & Salzman, C.D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55, 970–984 (2007).

    Article  CAS  Google Scholar 

  28. Blair, H.T. et al. Unilateral storage of fear memories by the amygdala. J. Neurosci. 25, 4198–4205 (2005).

    Article  CAS  Google Scholar 

  29. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).

    Article  CAS  Google Scholar 

  30. Han, J.H. et al. Neuronal competition and selection during memory formation. Science 316, 457–460 (2007).

    Article  CAS  Google Scholar 

  31. Helmstetter, F.J. & Tershner, S.A. Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses. J. Neurosci. 14, 7099–7108 (1994).

    Article  CAS  Google Scholar 

  32. LeDoux, J.E., Iwata, J., Cicchetti, P. & Reis, D.J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988).

    Article  CAS  Google Scholar 

  33. Kim, J.J., Rison, R.A. & Fanselow, M.S. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav. Neurosci. 107, 1093–1098 (1993).

    Article  CAS  Google Scholar 

  34. Zhao, Z. & Davis, M. Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J. Neurosci. 24, 10326–10334 (2004).

    Article  CAS  Google Scholar 

  35. Kamin, L.J. Attention-like processes in classical conditioning. in Miami Symp. Predictability, Behavior and Aversive Stimulation (ed. Jones, M.R.) 9–32 (University of Miami Press, Miami, 1968).

  36. Young, S.L. & Fanselow, M.S. Associative regulation of Pavlovian fear conditioning: unconditional stimulus intensity, incentive shifts and latent inhibition. J. Exp. Psychol. Anim. Behav. Process. 18, 400–413 (1992).

    Article  CAS  Google Scholar 

  37. Sutton, R.S. & Barto, A.G. Reinforcement Learning (MIT Press, Cambridge, Massachusetts, 1998).

  38. Uwano, T., Nishijo, H., Ono, T. & Tamura, R. Neuronal responsiveness to various sensory stimuli, and associative learning in the rat amygdala. Neuroscience 68, 339–361 (1995).

    Article  CAS  Google Scholar 

  39. Fanselow, M.S. The midbrain periaqueductal gray as a coordinator of action in response to fear and anxiety. in The Midbrain Periaqueductal Gray Matter (eds. Depaulis, A. & Bandler, R.) (Plenum, New York, 1991).

  40. Helmstetter, F.J., Parsons, R.G. & Gafford, G.M. Macromolecular synthesis, distributed synaptic plasticity and fear conditioning. Neurobiol. Learn. Mem. 89, 324–337 (2008).

    Article  CAS  Google Scholar 

  41. Keay, K.A., Feil, K., Gordon, B.D., Herbert, H. & Bandler, R. Spinal afferents to functionally distinct periaqueductal gray columns in the rat: an anterograde and retrograde tracing study. J. Comp. Neurol. 385, 207–229 (1997).

    Article  CAS  Google Scholar 

  42. Gauriau, C. & Bernard, J.F. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J. Comp. Neurol. 468, 24–56 (2004).

    Article  Google Scholar 

  43. Di Scala, G., Mana, M.J., Jacobs, W.J. & Phillips, A.G. Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat. Physiol. Behav. 40, 55–63 (1987).

    Article  CAS  Google Scholar 

  44. Ottersen, O.P. Afferent connections to the amygdaloid complex of the rat with some observations in the cat. III. Afferents from the lower brain stem. J. Comp. Neurol. 202, 335–356 (1981).

    Article  CAS  Google Scholar 

  45. Herrero, M.T., Insausti, R. & Gonzalo, L.M. Cortically projecting cells in the periaqueductal gray matter of the rat. A retrograde fluorescent tracer study. Brain Res. 543, 201–212 (1991).

    Article  CAS  Google Scholar 

  46. Cassell, M.D. & Wright, D.J. Topography of projections from the medial prefrontal cortex to the amygdala in the rat. Brain Res. Bull. 17, 321–333 (1986).

    Article  CAS  Google Scholar 

  47. Aston-Jones, G. et al. Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog. Brain Res. 88, 47–75 (1991).

    Article  CAS  Google Scholar 

  48. Ennis, M., Behbehani, M., Shipley, M.T., Van Bockstaele, E.J. & Aston-Jones, G. Projections from the periaqueductal gray to the rostromedial pericoerulear region and nucleus locus coeruleus: anatomic and physiologic studies. J. Comp. Neurol. 306, 480–494 (1991).

    Article  CAS  Google Scholar 

  49. Swanson, L.W. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9, 321–353 (1982).

    Article  CAS  Google Scholar 

  50. Johansen, J.P. & Fields, H.L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7, 398–403 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Nicola and A. Welday for comments on an earlier version of the manuscript and M. Fanselow, D. Buonomano, R. Thompson, D. Schiller and Y. Niv for valuable discussions. This work was supported by a National Science Foundation Graduate Research Fellowship to J.P.J. and a National Alliance for Research on Schizophrenia and Depression Young Investigator Award and US National Institutes of Health grant (R01 MH073700-01) to H.T.B.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the planning and design of the study. Data collection was performed by J.P.J. and J.W.T. Data analysis and writing of the manuscript were performed by J.P.J., J.W.T. and H.T.B. The neurophysiology and fear conditioning experiments were conducted in the laboratory of H.T.B. and the blocking experiments were conducted in the laboratory of J.E.L.

Corresponding authors

Correspondence to Jason W Tarpley or Hugh T Blair.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Discussion (PDF 2073 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansen, J., Tarpley, J., LeDoux, J. et al. Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nat Neurosci 13, 979–986 (2010). https://doi.org/10.1038/nn.2594

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing