Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intention and attention: different functional roles for LIPd and LIPv

This article has been updated

Abstract

Establishing the circuitry underlying attentional and oculomotor control is a long-standing goal of systems neuroscience. The macaque lateral intraparietal area (LIP) has been implicated in both processes, but numerous studies have produced contradictory findings. Anatomically, LIP consists of a dorsal and ventral subdivision, but the functional importance of this division remains unclear. We injected muscimol, a GABAA agonist, and manganese, a magnetic resonance imaging lucent paramagnetic ion, into different portions of LIP, examined the effects of the resulting reversible inactivation on saccade planning and attention, and visualized each injection using anatomical magnetic resonance imaging. We found that dorsal LIP (LIPd) is primarily involved in oculomotor planning, whereas ventral LIP (LIPv) contributes to both attentional and oculomotor processes. Additional testing revealed that the two functions were dissociable, even in LIPv. Using our technique, we found a clear structure-function relationship that distinguishes LIPv from LIPd and found dissociable circuits for attention and eye movements in the posterior parietal cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral tasks and example injections.
Figure 2: LIP lesion effects as a function of depth.
Figure 3: Performance of memory-guided saccades and visual search before and after LIPd and LIPv inactivations.
Figure 4: Initial eye position modulates search, but not saccade, effect.
Figure 5: Lesion overlap maps.
Figure 6: MRIs and search effects of control injections.

Similar content being viewed by others

Change history

  • 07 March 2010

    In the version of this article initially published online, the scale bar in Figure 2a was not the correct size. A scale bar and several arrows were missing from Figure 6. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Barash, S., Bracewell, R.M., Fogassi, L., Gnadt, J.W. & Andersen, R.A. Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J. Neurophysiol. 66, 1109–1124 (1991).

    Article  CAS  Google Scholar 

  2. Snyder, L.H., Batista, A.P. & Andersen, R.A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  Google Scholar 

  3. Gottlieb, J.P., Kusunoki, M. & Goldberg, M.E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).

    Article  CAS  Google Scholar 

  4. Bisley, J.W. & Goldberg, M.E. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 81–86 (2003).

    Article  CAS  Google Scholar 

  5. Thier, P. & Andersen, R.A. Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. J. Neurophysiol. 80, 1713–1735 (1998).

    Article  CAS  Google Scholar 

  6. Cutrell, E.B. & Marrocco, R.T. Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention. Exp. Brain Res. 144, 103–113 (2002).

    Article  CAS  Google Scholar 

  7. Lynch, J.C., Graybiel, A.M. & Lobeck, L.J. The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J. Comp. Neurol. 235, 241–254 (1985).

    Article  CAS  Google Scholar 

  8. Tanné, J., Boussaoud, D., Boyer-Zeller, N. & Rouiller, E.M. Direct visual pathways for reaching movements in the macaque monkey. Neuroreport 7, 267–272 (1995).

    Article  Google Scholar 

  9. Blatt, G.J., Andersen, R.A. & Stoner, G.R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299, 421–445 (1990).

    Article  CAS  Google Scholar 

  10. Stanton, G.B., Bruce, C.J. & Goldberg, M.E. Topography of projections to posterior cortical areas from the macaque frontal eye fields. J. Comp. Neurol. 353, 291–305 (1995).

    Article  CAS  Google Scholar 

  11. Rushworth, M.F., Nixon, P.D. & Passingham, R.E. Parietal cortex and movement. I. Movement selection and reaching. Exp. Brain Res. 117, 292–310 (1997).

    Article  CAS  Google Scholar 

  12. Chafee, M.V. & Goldman-Rakic, P.S. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J. Neurophysiol. 83, 1550–1566 (2000).

    Article  CAS  Google Scholar 

  13. Wardak, C., Olivier, E. & Duhamel, J.R. A deficit in covert attention after parietal cortex inactivation in the monkey. Neuron 42, 501–508 (2004).

    Article  CAS  Google Scholar 

  14. Li, C.S., Mazzoni, P. & Andersen, R.A. Effect of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades. J. Neurophysiol. 81, 1827–1838 (1999).

    Article  CAS  Google Scholar 

  15. Wardak, C., Olivier, E. & Duhamel, J.R. Saccadic target selection deficits after lateral intraparietal area inactivation in monkeys. J. Neurosci. 22, 9877–9884 (2002).

    Article  CAS  Google Scholar 

  16. Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  Google Scholar 

  17. Land, M.F. & Hayhoe, M. In what ways do eye movements contribute to everyday activities? Vision Res. 41, 3559–3565 (2001).

    Article  CAS  Google Scholar 

  18. Kustov, A.A. & Robinson, D.L. Shared neural control of attentional shifts and eye movements. Nature 384, 74–77 (1996).

    Article  CAS  Google Scholar 

  19. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761–773 (1998).

    Article  CAS  Google Scholar 

  20. Kowler, E., Anderson, E., Dosher, B. & Blaser, E. The role of attention in the programming of saccades. Vision Res. 35, 1897–1916 (1995).

    Article  CAS  Google Scholar 

  21. Lewis, J.W. & Van Essen, D.C. Corticocortical connections of visual, sensorimotor and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  Google Scholar 

  22. Lewis, J.W. & Van Essen, D.C. Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79–111 (2000).

    Article  CAS  Google Scholar 

  23. Medalla, M. & Barbas, H. Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure. Eur. J. Neurosci. 23, 161–179 (2006).

    Article  CAS  Google Scholar 

  24. Cox, D.D., Papanastassiou, A.M., Oreper, D., Andken, B.B. & Dicarlo, J.J. High-resolution three-dimensional microelectrode brain mapping using stereo microfocal X-ray imaging. J. Neurophysiol. 100, 2966–2976 (2008).

    Article  Google Scholar 

  25. Koretsky, A.P. & Silva, A.C. Manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed. 17, 527–531 (2004).

    Article  CAS  Google Scholar 

  26. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  27. Schneider, W. & Schiffrin, R.M. Controlled and automatic human information processing: I. Detection, search and attention. Psychol. Rev. 84, 1–66 (1977).

    Article  Google Scholar 

  28. Andersen, R.A., Bracewell, R.M., Barash, S., Gnadt, J.W. & Fogassi, L. Eye position effects on visual, memory and saccade-related activity in areas LIP and 7a of macaque. J. Neurosci. 10, 1176–1196 (1990).

    Article  CAS  Google Scholar 

  29. Sereno, A.B. & Maunsell, J.H. Shape selectivity in primate lateral intraparietal cortex. Nature 395, 500–503 (1998).

    Article  CAS  Google Scholar 

  30. Schall, J.D., Morel, A., King, D.J. & Bullier, J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487 (1995).

    Article  CAS  Google Scholar 

  31. Murthy, A., Thompson, K.G. & Schall, J.D. Dynamic dissociation of visual selection from saccade programming in frontal eye field. J. Neurophysiol. 86, 2634–2637 (2001).

    Article  CAS  Google Scholar 

  32. Moore, T., Armstrong, K.M. & Fallah, M. Visuomotor origins of covert spatial attention. Neuron 40, 671–683 (2003).

    Article  CAS  Google Scholar 

  33. Moore, T. & Fallah, M. Microstimulation of the frontal eye field and its effects on covert spatial attention. J. Neurophysiol. 91, 152–162 (2004).

    Article  Google Scholar 

  34. Müller, J.R., Philiastides, M.G. & Newsome, W.T. Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA 102, 524–529 (2005).

    Article  Google Scholar 

  35. Ignashchenkova, A., Dicke, P.W., Haarmeier, T. & Thier, P. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat. Neurosci. 7, 56–64 (2004).

    Article  CAS  Google Scholar 

  36. Gaymard, B., Lynch, J., Ploner, C.J., Condy, C. & Rivaud-Pechoux, S. The parieto-collicular pathway: anatomical location and contribution to saccade generation. Eur. J. Neurosci. 17, 1518–1526 (2003).

    Article  CAS  Google Scholar 

  37. Moore, T. & Armstrong, K.M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Article  CAS  Google Scholar 

  38. Yang, T. & Shadlen, M.N. Probabilistic reasoning by neurons. Nature 447, 1075–1080 (2007).

    Article  CAS  Google Scholar 

  39. Huk, A.C. & Shadlen, M.N. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25, 10420–10436 (2005).

    Article  CAS  Google Scholar 

  40. Ben Hamed, S. & Duhamel, J.R. Ocular fixation and visual activity in the monkey lateral intraparietal area. Exp. Brain Res. 142, 512–528 (2002).

    Article  CAS  Google Scholar 

  41. Ben Hamed, S., Duhamel, J.R., Bremmer, F. & Graf, W. Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis. Exp. Brain Res. 140, 127–144 (2001).

    Article  CAS  Google Scholar 

  42. Ipata, A.E., Gee, A.L., Goldberg, M.E. & Bisley, J.W. Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. J. Neurosci. 26, 3656–3661 (2006).

    Article  CAS  Google Scholar 

  43. Powell, K.D. & Goldberg, M.E. Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. J. Neurophysiol. 84, 301–310 (2000).

    Article  CAS  Google Scholar 

  44. Ipata, A.E., Gee, A.L., Bisley, J.W. & Goldberg, M.E. Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals. Exp. Brain Res. 192, 479–488 (2009).

    Article  Google Scholar 

  45. Wardak, C., Ibos, G., Duhamel, J.R. & Olivier, E. Contribution of the monkey frontal eye field to covert visual attention. J. Neurosci. 26, 4228–4235 (2006).

    Article  CAS  Google Scholar 

  46. Dias, E.C. & Segraves, M.A. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol. 81, 2191–2214 (1999).

    Article  CAS  Google Scholar 

  47. Aizawa, H. & Wurtz, R.H. Reversible inactivation of monkey superior colliculus. I. Curvature of saccadic trajectory. J. Neurophysiol. 79, 2082–2096 (1998).

    Article  CAS  Google Scholar 

  48. Li, C.S. & Andersen, R.A. Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task. Exp. Brain Res. 137, 45–57 (2001).

    Article  CAS  Google Scholar 

  49. Vuilleumier, P. & Schwartz, S. Modulation of visual perception by eye gaze direction in patients with spatial neglect and extinction. Neuroreport 12, 2101–2104 (2001).

    Article  CAS  Google Scholar 

  50. Pavani, F., Ladavas, E. & Driver, J. Gaze direction modulates auditory spatial deficits in stroke patients with neglect. Cortex 41, 181–188 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Baker and G. Patel for assistance in developing the manganese-MRI technique, and T. Malone, J. Tucker and J. Vytlacil for technical assistance. This work was supported by National Eye Institute grant EY012135 and National Science Foundation (Integrative Graduate Education and Research Traineeship) grant 0548890.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. performed all aspects of this study, including the experimental design, data collection of two monkeys, analysis and writing of the manuscript. E.A.Y. assisted in data collection and analysis. L.H.S. oversaw the experiments and assisted in data analysis and manuscript preparation.

Corresponding author

Correspondence to Yuqing Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1 and 2 and Supplementary Text (PDF 943 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yttri, E. & Snyder, L. Intention and attention: different functional roles for LIPd and LIPv. Nat Neurosci 13, 495–500 (2010). https://doi.org/10.1038/nn.2496

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing