Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rewiring of hindlimb corticospinal neurons after spinal cord injury

Abstract

Little is known about the functional role of axotomized cortical neurons that survive spinal cord injury. Large thoracic spinal cord injuries in adult rats result in impairments of hindlimb function. Using retrograde tracers, we found that axotomized corticospinal axons from the hindlimb sensorimotor cortex sprouted in the cervical spinal cord. Mapping of these neurons revealed the emergence of a new forelimb corticospinal projection from the rostral part of the former hindlimb cortex. Voltage-sensitive dye (VSD) imaging and blood-oxygen-level–dependent functional magnetic resonance imaging (BOLD fMRI) revealed a stable expansion of the forelimb sensory map, covering in particular the former hindlimb cortex containing the rewired neurons. Therefore, axotomised hindlimb corticospinal neurons can be incorporated into the sensorimotor circuits of the unaffected forelimb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral analysis after a thoracic spinal cord injury.
Figure 2: Retrograde labeling of hindlimb corticospinal neurons projecting to the cervical spinal cord gray matter.
Figure 3: BOLD-fMRI mapping of forelimb activation in the sensory motor cortex before and after injury.
Figure 4: Voltage-sensitive dye imaging of the sensory and motor cortices responding to forelimb stimulation before and after injury.
Figure 5: Response of the hindlimb sensorimotor cortex to forelimb stimulation in intact and injured rats.
Figure 6: Forelimb stimulation evoked action potentials in the corticospinal tract at thoracic level T7.

Similar content being viewed by others

References

  1. Kalil, K. & Schneider, G.E. Retrograde cortical and axonal changes following lesions of the pyramidal tract. Brain Res. 89, 15–27 (1975).

    Article  CAS  Google Scholar 

  2. Wannier, T., Schmidlin, E., Bloch, J. & Rouiller, E.M. A unilateral section of the corticospinal tract at cervical level in primate does not lead to measurable cell loss in motor cortex. J. Neurotrauma 22, 703–717 (2005).

    Article  CAS  Google Scholar 

  3. Hains, B.C., Black, J.A. & Waxman, S.G. Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J. Comp. Neurol. 462, 328–341 (2003).

    Article  Google Scholar 

  4. Maier, I.C. & Schwab, M.E. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Phil. Trans. R. Soc. Lond. B 361, 1611–1634 (2006).

    Article  CAS  Google Scholar 

  5. Raineteau, O. & Schwab, M.E. Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2, 263–273 (2001).

    Article  CAS  Google Scholar 

  6. Aoki, M., Fujito, Y., Satomi, H., Kurosawa, Y. & Kasaba, T. The possible role of collateral sprouting in the functional restitution of corticospinal connections after spinal hemisection. Neurosci. Res. 3, 617–627 (1986).

    Article  CAS  Google Scholar 

  7. Bareyre, F.M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269–277 (2004).

    Article  CAS  Google Scholar 

  8. Fouad, K., Pedersen, V., Schwab, M.E. & Brosamle, C. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr. Biol. 11, 1766–1770 (2001).

    Article  CAS  Google Scholar 

  9. Weidner, N., Ner, A., Salimi, N. & Tuszynski, M.H. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl. Acad. Sci. USA 98, 3513–3518 (2001).

    Article  CAS  Google Scholar 

  10. Ghosh, A. et al. Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. J. Neurosci. 29, 12210–12219 (2009).

    Article  CAS  Google Scholar 

  11. Kaas, J.H. et al. Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord. Exp. Neurol. 209, 407–416 (2008).

    Article  Google Scholar 

  12. Jain, N., Florence, S.L., Qi, H.X. & Kaas, J.H. Growth of new brainstem connections in adult monkeys with massive sensory loss. Proc. Natl. Acad. Sci. USA 97, 5546–5550 (2000).

    Article  CAS  Google Scholar 

  13. Endo, T., Spenger, C., Tominaga, T., Brene, S. & Olson, L. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain 130, 2951–2961 (2007).

    Article  Google Scholar 

  14. Jain, N., Florence, S.L. & Kaas, J.H. Limits on plasticity in somatosensory cortex of adult rats: hindlimb cortex is not reactivated after dorsal column section. J. Neurophysiol. 73, 1537–1546 (1995).

    Article  CAS  Google Scholar 

  15. Wall, P.D. & Egger, M.D. Formation of new connexions in adult rat brains after partial deafferentation. Nature 232, 542–545 (1971).

    Article  CAS  Google Scholar 

  16. Liebscher, T. et al. Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann. Neurol. 58, 706–719 (2005).

    Article  CAS  Google Scholar 

  17. Schucht, P., Raineteau, O., Schwab, M.E. & Fouad, K. Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord. Exp. Neurol. 176, 143–153 (2002).

    Article  CAS  Google Scholar 

  18. Hamers, F.P., Koopmans, G.C. & Joosten, E.A. CatWalk-assisted gait analysis in the assessment of spinal cord injury. J. Neurotrauma 23, 537–548 (2006).

    Article  Google Scholar 

  19. Metz, G.A. & Whishaw, I.Q. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J. Neurosci. Methods 115, 169–179 (2002).

    Article  Google Scholar 

  20. Sievert, C.F. & Neafsey, E.J. A chronic unit study of the sensory properties of neurons in the forelimb areas of rat sensorimotor cortex. Brain Res. 381, 15–23 (1986).

    Article  CAS  Google Scholar 

  21. Neafsey, E.J. & Sievert, C. A second forelimb motor area exists in rat frontal cortex. Brain Res. 232, 151–156 (1982).

    Article  CAS  Google Scholar 

  22. Akintunde, A. & Buxton, D.F. Differential sites of origin and collateralization of corticospinal neurons in the rat: a multiple fluorescent retrograde tracer study. Brain Res. 575, 86–92 (1992).

    Article  CAS  Google Scholar 

  23. Hall, R.D. & Lindholm, E.P. Organization of motor and somatosensory neocortex in the albino rat. Brain Res. 66, 23–38 (1974).

    Article  Google Scholar 

  24. Liu, Z.M., Schmidt, K.F., Sicard, K.M. & Duong, T.Q. Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia. Magn. Reson. Med. 52, 277–285 (2004).

    Article  Google Scholar 

  25. Sicard, K.M. & Duong, T.Q. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25, 850–858 (2005).

    Article  Google Scholar 

  26. Guilbaud, G., Benoist, J.M., Levante, A., Gautron, M. & Willer, J.C. Primary somatosensory cortex in rats with pain-related behaviors due to a peripheral mononeuropathy after moderate ligation of one sciatic nerve: neuronal responsivity to somatic stimulation. Exp. Brain Res. 92, 227–245 (1992).

    Article  CAS  Google Scholar 

  27. Adrian, E.D. & Moruzzi, G. Impulses in the pyramidal tract. J. Physiol. (Lond.) 97, 153–199 (1939).

    Article  CAS  Google Scholar 

  28. Swett, J.E. & Bourassa, C.M. Short latency activation of pyramidal tract cells by Group I afferent volleys in the cat. J. Physiol. (Lond.) 189, 101–117 (1967).

    Article  CAS  Google Scholar 

  29. McComas, A.J. & Wilson, P. An investigation of pyramidal tract cells in the somatosensory cortex of the rat. J. Physiol. (Lond.) 194, 271–288 (1968).

    Article  CAS  Google Scholar 

  30. Schreyer, D.J. & Jones, E.G. Axon elimination in the developing corticospinal tract of the rat. Brain Res. 466, 103–119 (1988).

    Article  CAS  Google Scholar 

  31. Choi, D., Li, D. & Raisman, G. Fluorescent retrograde neuronal tracers that label the rat facial nucleus: a comparison of Fast Blue, Fluoro-ruby, Fluoro-emerald, Fluoro-Gold and DiI. J. Neurosci. Methods 117, 167–172 (2002).

    Article  CAS  Google Scholar 

  32. Schwab, M.E. & Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370 (1996).

    Article  CAS  Google Scholar 

  33. Fawcett, J.W. & Geller, H.M. Regeneration in the CNS: optimism mounts. Trends Neurosci. 21, 179–180 (1998).

    Article  CAS  Google Scholar 

  34. Foerster, A.P. Spontaneous regeneration of cut axons in adult rat brain. J. Comp. Neurol. 210, 335–356 (1982).

    Article  CAS  Google Scholar 

  35. Brown, C.E., Aminoltejari, K., Erb, H., Winship, I.R. & Murphy, T.H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J. Neurosci. 29, 1719–1734 (2009).

    Article  CAS  Google Scholar 

  36. Turner, J.A., Lee, J.S., Schandler, S.L. & Cohen, M.J. An fMRI investigation of hand representation in paraplegic humans. Neurorehabil. Neural Repair 17, 37–47 (2003).

    Article  Google Scholar 

  37. Curt, A., Bruehlmeier, M., Leenders, K.L., Roelcke, U. & Dietz, V. Differential effect of spinal cord injury and functional impairment on human brain activation. J. Neurotrauma 19, 43–51 (2002).

    Article  CAS  Google Scholar 

  38. Doetsch, G.S., Harrison, T.A., MacDonald, A.C. & Litaker, M.S. Short-term plasticity in primary somatosensory cortex of the rat: rapid changes in magnitudes and latencies of neuronal responses following digit denervation. Exp. Brain Res. 112, 505–512 (1996).

    Article  CAS  Google Scholar 

  39. Tseng, G.F. & Prince, D.A. Structural and functional alterations in rat corticospinal neurons after axotomy. J. Neurophysiol. 75, 248–267 (1996).

    Article  CAS  Google Scholar 

  40. Huntley, G.W. Correlation between patterns of horizontal connectivity and the extend of short-term representational plasticity in rat motor cortex. Cereb. Cortex 7, 143–156 (1997).

    Article  CAS  Google Scholar 

  41. Jacobs, K.M. & Donoghue, J.P. Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251, 944–947 (1991).

    Article  CAS  Google Scholar 

  42. Hess, G. & Donoghue, J.P. Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J. Neurophysiol. 71, 2543–2547 (1994).

    Article  CAS  Google Scholar 

  43. Kim, B.G., Dai, H.N., McAtee, M., Vicini, S. & Bregman, B.S. Remodeling of synaptic structures in the motor cortex following spinal cord injury. Exp. Neurol. 198, 401–415 (2006).

    Article  Google Scholar 

  44. Rosenkranz, K., Williamon, A. & Rothwell, J.C. Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. J. Neurosci. 27, 5200–5206 (2007).

    Article  CAS  Google Scholar 

  45. Salimi, I., Friel, K.M. & Martin, J.H. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J. Neurosci. 28, 7426–7434 (2008).

    Article  CAS  Google Scholar 

  46. Sydekum, E. et al. Functional reorganization in rat somatosensory cortex assessed by fMRI: elastic image registration based on structural landmarks in fMRI images and application to spinal cord injured rats. Neuroimage 44, 1345–1354 (2009).

    Article  Google Scholar 

  47. Ferezou, I. et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56, 907–923 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Scholl, E. Hochreutener, R. Schöb and L. Schnell for technical assistance. We thank A. Buchli, I. Maier, M. Starkey, V. Pernet, D. Margolis and B. Kampa for helpful discussions. This work was supported by the Swiss National Science Foundation, Grant 31–63633.00, the National Center of Competence in Research “Neural Plasticity and Repair” of the Swiss National Science Foundation, the Spinal Cord Consortium of the Christopher Reeve Paralysis Foundation, and NeuroNe, Network of Excellence of the European Consortium for Research in Neurodegenerative Diseases (Sixth Framework EU Program).

Author information

Authors and Affiliations

Authors

Contributions

A.G. and M.E.S. designed the experiments and prepared the manuscript. A.G., F.H. and E.S. carried out and interpreted the experiments. R.S., M.G., M.T.W., T.M. and C.B. performed the experiments. M.R. and B.W. prepared the manuscript.

Corresponding author

Correspondence to Arko Ghosh.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Note (PDF 2053 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Haiss, F., Sydekum, E. et al. Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat Neurosci 13, 97–104 (2010). https://doi.org/10.1038/nn.2448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing