Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex

Abstract

Cerebral cortex is comprised of regions, including six-layer neocortex and three-layer olfactory cortex, generated by telencephalic progenitors of an Emx1 lineage. The mechanism specifying region-specific subpopulations in this lineage is unknown. We found that the LIM homeodomain transcription factor Lhx2 in mice, expressed in graded levels by progenitors, determines their regional identity and fate decisions to generate neocortex or olfactory cortex. Deletion of Lhx2 with Emx1-cre at embryonic day 10.5 (E10.5) altered the fates of progenitors, causing them to generate three-layer cortex, phenocopying olfactory cortex rather than lateral neocortex. Progenitors did not generate ectopic olfactory cortex following Lhx2 deletion at E11.5. Thus, Lhx2 regulates a regional-fate decision by telencephalic progenitors during a critical period that ends as they differentiate from neuroepithelial cells to neuronogenic radial glia. These findings establish a genetic mechanism for determining regional-fate in the Emx1 lineage of telencephalic progenitors that generate cerebral cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of the loxP-flanked allele of Lhx2 and conditional deletion using Emx1-cre.
Figure 2: Complementary changes in neocortical and paleocortical domains in cerebral cortex of cKO-E mice following Lhx2 deletion by Emx1-cre.
Figure 3: Altered patterns of regional telencephalic markers demonstrate a re-fating of lateral neocortex into piriform cortex following Lhx2 deletion with Emx1-cre, but not Nestin-cre.
Figure 4: Distinct expression patterns of Ctip2 and Satb2 in Lhx2 cKO-E telencephalon indicate that lateral neocortex is re-fated into piriform cortex.
Figure 5: The ePC in lateral neocortex of Lhx2 cKO-E mice receives input from olfactory bulb similar to piriform cortex in wild-type mice.
Figure 6: The ePC located in the lateral neocortex in Lhx2 cKO-E mice is generated by an Emx1 lineage, whereas wild-type piriform cortex is not evident.
Figure 7: Size and extent of ePC in cKO-E mice and piriform cortex in wild-type and cKO-N mice.
Figure 8: Wild-type piriform cortex is generated and forms at appropriate ventral position in Lhx2 cKO-E mice but is subsequently eliminated.

Similar content being viewed by others

References

  1. Sanides, F. Comparative architectonics of the neocortex of mammals and their evolutionary interpretation. Ann. NY Acad. Sci. 167, 405–423 (1969).

    Article  Google Scholar 

  2. Bishop, K.M., Rubenstein, J.L.R. & O'Leary, D.D.M. Distinct actions of Emx1, Emx2 and Pax6 in regulating the specification of areas in the developing neocortex. J. Neurosci. 22, 7627–7638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Porter, F.D. et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain and definitive erythrocyte development. Development 124, 2935–2944 (1997).

    CAS  PubMed  Google Scholar 

  4. Bulchand, S., Grove, E.A., Porter, F.D. & Tole, S. LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech. Dev. 100, 165–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Vyas, A., Saha, B., Lai, E. & Tole, S. Paleocortex is specified in mice in which dorsal telencephalic patterning is severely disrupted. J. Comp. Neurol. 466, 545–553 (2003).

    Article  PubMed  Google Scholar 

  6. Monuki, E.S., Porter, F.D. & Walsh, C.A. Patterning of the dorsal telencephalon and cerebral cortex by a roof plate–Lhx2 pathway. Neuron 32, 591–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mangale, V.S. et al. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 319, 304–309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gorski, J.A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Graus-Porta, D. et al. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31, 367–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Britanova, O. et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57, 378–392 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, H., Chedotal, A., He, Z., Goodman, C.S. & Tessier-Lavigne, M. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV, but not Sema III. Neuron 19, 547–559 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Grove, E.A., Tole, S., Limon, J., Yip, L. & Ragsdale, C.W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    CAS  PubMed  Google Scholar 

  14. Assimacopoulos, S., Grove, E.A. & Ragsdale, C.W. Identification of a Pax6-dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex. J. Neurosci. 23, 6399–6403 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson, S., Mione, M., Yun, K. & Rubenstein, J.L.R. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Casarosa, S., Fode, C. & Guillemot, F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534 (1999).

    CAS  PubMed  Google Scholar 

  17. Colombo, E., Galli, R., Cossu, G., Gecz, J. & Broccoli, V. Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Dev. Dyn. 231, 631–639 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Yun, K., Garel, S., Fischman, S. & Rubenstein, J.L.R. Patterning of the lateral ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal and olfactory bulb histogenesis and the growth of axons through the basal ganglia. J. Comp. Neurol. 461, 151–165 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Matsuoka, H., Obama, H., Kelly, M.L., Matsui, T. & Nakamoto, M. Biphasic functions of the kinase-defective Ephb6 receptor in cell adhesion and migration. J. Biol. Chem. 280, 29355–29363 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Höglund, P.J., Adzic, D., Scicluna, S.J., Lindblom, J. & Fredriksson, R. The repertoire of solute carriers of family 6: identification of new human and rodent genes. Biochem. Biophys. Res. Commun. 336, 175–189 (2005).

    Article  PubMed  Google Scholar 

  21. Kriajevska, M. et al. Liprin beta 1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, is a new target for the metastasis-associated protein S100A4 (Mts1). J. Biol. Chem. 277, 5229–5235 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Shipley, M.T. & Adamek, G.D. The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res. Bull. 12, 669–688 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Soriano, P. Generalized lacZ expression with the ROSA26-cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Ariens-Kappers, C.U., Huber, G.C. & Crosby, E.C. The Comparative Anatomy of the Nervous System of Vertebrates Including Man (ed. Co, M.) (Macmillan, New York, 1936).

  26. Carney, R.S. et al. Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system. J. Neurosci. 26, 11562–11574 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hirata, T. et al. Mosaic development of the olfactory cortex with Pax6-dependent and -independent components. Brain Res. Dev. Brain Res. 136, 17–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bayer, S.A. & Altman, J. Neocortical Development (Raven Press, New York, 1991).

  29. O'Leary, D.D.M., Chou, S.J. & Sahara, S. Area patterning of the mammalian cortex. Neuron 56, 252–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Schuurmans, C. et al. Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J. 23, 2892–2902 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamasaki, T., Leingartner, A., Ringstedt, T. & O'Leary, D.D.M. EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43, 359–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Caviness, V.S. Jr. Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res. 256, 293–302 (1982).

    Article  PubMed  Google Scholar 

  33. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  PubMed  Google Scholar 

  34. Sahara, S. & O'Leary, D.D.M. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63, 48–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abbie, A.A. Cortical lamination in a poloprodont marsupial, Perameles natusa. J. Comp. Neurol. 76, 509–536 (1942).

    Article  Google Scholar 

  36. Ulinkski, P.S. Dorsal Ventricular Ridge: A Treatise on Forebrain Organization in Reptiles and Birds (Wiley, New York, 1983).

  37. Aboitiz, F., Montiel, J., Morales, D. & Concha, M. Evolutionary divergence of the reptilian and the mammalian brains: considerations on connectivity and development. Brain Res. Brain Res. Rev. 39, 141–153 (2002).

    Article  PubMed  Google Scholar 

  38. Rodríguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to cre-loxP. Nat. Genet. 25, 139–140 (2000).

    Article  PubMed  Google Scholar 

  39. Armentano, M. et al. COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas. Nat. Neurosci. 10, 1277–1286 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Higgins and H. Gutierrez for technical assistance, Y. Nakagawa for help with screening for Lhx2 genomic DNA, K. Jones for Emx1-cre mice, K.-A. Nave for Nex-cre mice, and P.M. Soriano for ROSA26-LacZ reporter mice. This work was supported by grants from the US National Institutes of Health to D.D.M.O.

Author information

Authors and Affiliations

Authors

Contributions

S-J.C. designed and generated the loxP-flanked allele of Lhx2, was a principal contributor to analysis of the Lhx2 conditional knockouts, prepared figures and assisted with the writing of the paper. C.G.P.-G. was a principal contributor to the analysis of the Lhx2 conditional knockouts, prepared figures and assisted with the writing of the paper. T.T.K. contributed to the analysis of the Lhx2 conditional knockouts and help to prepare the figures. D.D.M.O. conceived the study, designed and contributed to the analysis of the Lhx2 conditional knockouts, prepared figures and wrote the paper.

Corresponding author

Correspondence to Dennis D M O'Leary.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Results (PDF 1245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, SJ., Perez-Garcia, C., Kroll, T. et al. Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex. Nat Neurosci 12, 1381–1389 (2009). https://doi.org/10.1038/nn.2427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing