Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presynaptic α2δ-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions

Abstract

Synaptogenesis involves the transformation of a growth cone into synaptic boutons specialized for transmitter release. In Drosophila embryos lacking the α2δ-3 subunit of presynaptic, voltage-dependent Ca2+ channels, we found that motor neuron terminals failed to develop synaptic boutons and cytoskeletal abnormalities arose, including the loss of ankyrin2. Nevertheless, functional presynaptic specializations were present and apposed to clusters of postsynaptic glutamate receptors. The α2δ-3 protein has been thought to function strictly as an auxiliary subunit of the Ca2+ channel, but the phenotype of α2δ-3 (also known as stj) mutations cannot be explained by a channel defect; embryos lacking the pore-forming α1 subunit cacophony formed boutons. The synaptogenic function of α2δ-3 required only the α2 peptide, whose expression sufficed to rescue bouton formation. Our results indicate that α2δ proteins have functions that are independent of their roles in the biophysics and localization of Ca2+ channels and that synaptic architecture depends on these functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: α2δ-3 null embryos have a defect in bouton morphogenesis.
Figure 2: α2δ-3 null NMJs exhibit an arrest of synaptic morphogenesis.
Figure 3: Ankyrin2-XL is absent at the α2δ-3 null NMJ.
Figure 4: α2δ-3 null embryos retain synaptic components at their terminals.
Figure 5: Ca2+ channel α1 subunits are not detectable in α2δ-3 null embryonic active zones.
Figure 6: α2δ-3 null embryos have spontaneous minis, but no evoked synaptic transmission.
Figure 7: Bouton formation does not require the δ subunit.
Figure 8: Bouton formation does not require the cac α1 subunit.

Similar content being viewed by others

References

  1. Lardi-Studler, B. & Fritschy, J.M. Matching of pre- and postsynaptic specializations during synaptogenesis. Neuroscientist 13, 115–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Robitaille, R., Adler, E.M. & Charlton, M.P. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5, 773–779 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Wolf, M., Eberhart, A., Glossmann, H., Striessnig, J. & Grigorieff, N. Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy. J. Mol. Biol. 332, 171–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Nishimune, H., Sanes, J.R. & Carlson, S.S. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432, 580–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. De Waard, M., Gurnett, C.A. & Campbell, K.P. Structural and functional diversity of voltage-activated calcium channels. Ion Channels 4, 41–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Arikkath, J. & Campbell, K.P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Dolphin, A.C. Beta subunits of voltage-gated calcium channels. J. Bioenerg. Biomembr. 35, 599–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Littleton, J.T. & Ganetzky, B. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26, 35–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Qin, N., Yagel, S., Momplaisir, M.L., Codd, E.E. & D'Andrea, M.R. Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit. Mol. Pharmacol. 62, 485–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Klugbauer, N., Marais, E. & Hofmann, F. Calcium channel alpha2delta subunits: differential expression, function, and drug binding. J. Bioenerg. Biomembr. 35, 639–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Jay, S.D. et al. Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. J. Biol. Chem. 266, 3287–3293 (1991).

    CAS  PubMed  Google Scholar 

  12. Whittaker, C.A. & Hynes, R.O. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell 13, 3369–3387 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anantharaman, V. & Aravind, L. Cache—a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem. Sci. 25, 535–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Gurnett, C.A., Felix, R. & Campbell, K.P. Extracellular interaction of the voltage-dependent Ca2+ channel alpha2delta and alpha1 subunits. J. Biol. Chem. 272, 18508–18512 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Cantí, C. et al. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of alpha2delta subunits is key to trafficking voltage-gated Ca2+ channels. Proc. Natl. Acad. Sci. USA 102, 11230–11235 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gurnett, C.A., De Waard, M. & Campbell, K.P. Dual function of the voltage-dependent Ca2+ channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron 16, 431–440 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Wiser, O. et al. The alpha 2/delta subunit of voltage sensitive Ca2+ channels is a single transmembrane extracellular protein which is involved in regulated secretion. FEBS Lett. 379, 15–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Felix, R. Molecular regulation of voltage-gated Ca2+ channels. J. Recept. Signal Transduct. Res. 25, 57–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Bernstein, G.M. & Jones, O.T. Kinetics of internalization and degradation of N-type voltage-gated calcium channels: role of the alpha(2)/delta subunit. Cell Calcium 41, 27–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Dickman, D.K., Kurshan, P.T. & Schwarz, T.L. Mutations in a Drosophila alpha2delta voltage-gated calcium channel subunit reveal a crucial synaptic function. J. Neurosci. 28, 31–38 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dolphin, A.C. et al. The effect of alpha2-delta and other accessory subunits on expression and properties of the calcium channel alpha1G. J. Physiol. (Lond.) 519, 35–45 (1999).

    Article  CAS  Google Scholar 

  22. Barclay, J. et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J. Neurosci. 21, 6095–6104 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brodbeck, J. et al. The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated alpha 2 delta-2 protein with abnormal function. J. Biol. Chem. 277, 7684–7693 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Ly, C.V., Yao, C.K., Verstreken, P., Ohyama, T. & Bellen, H.J. straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel alpha1 subunit. J. Cell Biol. 181, 157–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wycisk, K.A. et al. Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Invest. Ophthalmol. Vis. Sci. 47, 3523–3530 (2006).

    Article  PubMed  Google Scholar 

  26. Yoshihara, M., Rheuben, M.B. & Kidokoro, Y. Transition from growth cone to functional motor nerve terminal in Drosophila embryos. J. Neurosci. 17, 8408–8426 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G.W. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26, 371–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Pielage, J. et al. A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and transsynaptic cell adhesion. Neuron 58, 195–209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koch, I. et al. Drosophila ankyrin 2 is required for synaptic stability. Neuron 58, 210–222 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bennett, V. & Chen, L. Ankyrins and cellular targeting of diverse membrane proteins to physiological sites. Curr. Opin. Cell Biol. 13, 61–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Wagh, D.A. et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49, 833–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, L.A. et al. A Drosophila calcium channel alpha1 subunit gene maps to a genetic locus associated with behavioral and visual defects. J. Neurosci. 16, 7868–7879 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawasaki, F., Felling, R. & Ordway, R.W. A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila. J. Neurosci. 20, 4885–4889 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawasaki, F., Zou, B., Xu, X. & Ordway, R.W. Active zone localization of presynaptic calcium channels encoded by the cacophony locus of Drosophila. J. Neurosci. 24, 282–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rieckhof, G.E., Yoshihara, M., Guan, Z. & Littleton, J.T. Presynaptic N-type calcium channels regulate synaptic growth. J. Biol. Chem. 278, 41099–41108 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Kuromi, H., Honda, A. & Kidokoro, Y. Ca2+ influx through distinct routes controls exocytosis and endocytosis at Drosophila presynaptic terminals. Neuron 41, 101–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Hou, J., Tamura, T. & Kidokoro, Y. Delayed synaptic transmission in Drosophila cacophony null embryos. J. Neurophysiol. 100, 2833–2842 (2008).

    Article  PubMed  Google Scholar 

  38. Felix, R., Gurnett, C.A., De Waard, M. & Campbell, K.P. Dissection of functional domains of the voltage-dependent Ca2+ channel alpha2delta subunit. J. Neurosci. 17, 6884–6891 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bangalore, R., Mehrke, G., Gingrich, K., Hofmann, F. & Kass, R.S. Influence of L-type Ca channel alpha 2/delta-subunit on ionic and gating current in transiently transfected HEK 293 cells. Am. J. Physiol. 270, H1521–H1528 (1996).

    CAS  PubMed  Google Scholar 

  40. Shistik, E., Ivanina, T., Puri, T., Hosey, M. & Dascal, N. Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. J. Physiol. (Lond.) 489, 55–62 (1995).

    Article  CAS  Google Scholar 

  41. Ruiz-Cañada, C. & Budnik, V. Introduction on the use of the Drosophila embryonic/larval neuromuscular junction as a model system to study synapse development and function, and a brief summary of pathfinding and target recognition. Int. Rev. Neurobiol. 75, 1–31 (2006).

    Article  PubMed  Google Scholar 

  42. Pack-Chung, E., Kurshan, P.T., Dickman, D.K. & Schwarz, T.L. A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport. Nat. Neurosci. 10, 980–989 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Hortsch, M. et al. A conserved role for L1 as a transmembrane link between neuronal adhesion and membrane cytoskeleton assembly. Cell Adhes. Commun. 5, 61–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Bork, P. & Rohde, K. More von Willebrand factor type A domains? Sequence similarities with malaria thrombospondin-related anonymous protein, dihydropyridine-sensitive calcium channel and inter-alpha-trypsin inhibitor. Biochem. J. 279, 908–910 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johansen, J., Halpern, M.E., Johansen, K.M. & Keshishian, H. Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. J. Neurosci. 9, 710–725 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sink, H. & Whitington, P.M. Location and connectivity of abdominal motoneurons in the embryo and larva of Drosophila melanogaster. J. Neurobiol. 22, 298–311 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Vactor, D.V., Sink, H., Fambrough, D., Tsoo, R. & Goodman, C.S. Genes that control neuromuscular specificity in Drosophila. Cell 73, 1137–1153 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Stowers, R.S. & Schwarz, T.L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, T. & Rubin, G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  50. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germline-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Kazama for assistance with the electrophysiology, R. Ordway, J.T. Littleton, L. Hall, H. Aberle, K. Basler and the Bloomington Stock Center for stocks and reagents, D. Featherstone, T. Littleton, N. Reese and A. Goldstein for helpful discussions, L. Bu and M. Liana of the MRDDRC Imaging and Histology Cores, the Harvard Medical School electron microscopy facility, and E. Pogoda for assistance. This work was supported by US National Institutes of Health grants RO1 NS041062 and MH075058 (T.L.S.) and a National Defense Science and Engineering Graduate Fellowship (P.T.K.).

Author information

Authors and Affiliations

Authors

Contributions

P.T.K. performed the experiments. A.O. designed and generated the HA-tagged α2δ-3 construct, collaborated in the design of experiments involving that construct and assisted with manuscript editing. P.T.K. and T.L.S. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Thomas L Schwarz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 944 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurshan, P., Oztan, A. & Schwarz, T. Presynaptic α2δ-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions. Nat Neurosci 12, 1415–1423 (2009). https://doi.org/10.1038/nn.2417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing