Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adult generation of glutamatergic olfactory bulb interneurons

An Erratum to this article was published on 01 May 2010

This article has been updated

Abstract

The adult mouse subependymal zone (SEZ) harbors neural stem cells that are thought to exclusively generate GABAergic interneurons of the olfactory bulb. We examined the adult generation of glutamatergic juxtaglomerular neurons, which had dendritic arborizations that projected into adjacent glomeruli, identifying them as short-axon cells. Fate mapping revealed that these originate from Neurog2- and Tbr2-expressing progenitors located in the dorsal region of the SEZ. Examination of the progenitors of these glutamatergic interneurons allowed us to determine the sequential expression of transcription factors in these cells that are thought to be hallmarks of glutamatergic neurogenesis in the developing cerebral cortex and adult hippocampus. Indeed, the molecular specification of these SEZ progenitors allowed for their recruitment into the cerebral cortex after a lesion was induced. Taken together, our data indicate that SEZ progenitors not only produce a population of adult-born glutamatergic juxtaglomerular neurons, but may also provide a previously unknown source of progenitors for endogenous repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurog2+/gfp, Tbr1 and Tbr2 are expressed in a defined dorsal region of the SEZ.
Figure 2: Neurog2, Tbr1 and Tbr2 expression defines a subset of neuroblasts.
Figure 3: Presence of Tbr2 and Tbr1 defines a non-GABAergic subpopulation of neuroblasts.
Figure 4: Fate mapping of Tbr2- or Neurog2-derived progeny in the olfactory bulb.
Figure 5: Viral vector–mediated fate mapping of vGluT2-expressing juxtaglomerular neurons.
Figure 6: A subpopulation of newly generated juxtaglomerular neurons expresses vGluT2 mRNA.
Figure 7: Adult SEZ stem and progenitor cells give rise to some glutamatergic neurons in vitro.
Figure 8: Tbr2-positive cells migrate into the lesioned cerebral cortex.

Similar content being viewed by others

Change history

  • 11 December 2009

    In the version of this article initially published, the email address of one of the corresponding authors was misspelled. It should be magdalena.goetz@helmholtz-muenchen.de. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Kokaia, Z. & Lindvall, O. Neurogenesis after ischaemic brain insults. Curr. Opin. Neurobiol. 13, 127–132 (2003).

    Article  CAS  Google Scholar 

  2. Sohur, U.S., Emsley, J.G., Mitchell, B.D. & Macklis, J.D. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Phil. Trans. R. Soc. Lond. B 361, 1477–1497 (2006).

    Article  CAS  Google Scholar 

  3. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).

    Article  CAS  Google Scholar 

  4. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  5. Merkle, F.T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

    Article  CAS  Google Scholar 

  6. Chen, J., Magavi, S.S. & Macklis, J.D. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc. Natl. Acad. Sci. USA 101, 16357–16362 (2004).

    Article  CAS  Google Scholar 

  7. Magavi, S.S., Leavitt, B.R. & Macklis, J. D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    Article  CAS  Google Scholar 

  8. Lledo, P.M., Alonso, M. & Grubb, M.S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7, 179–193 (2006).

    Article  CAS  Google Scholar 

  9. Wonders, C.P. & Anderson, S.A. The origin and specification of cortical interneurons. Nat. Rev. Neurosci. 7, 687–696 (2006).

    Article  CAS  Google Scholar 

  10. Brill, M.S. et al. A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J. Neurosci. 28, 6439–6452 (2008).

    Article  CAS  Google Scholar 

  11. Waclaw, R.R. et al. The zinc finger transcription factor Sp8 regulates the generation and diversity of olfactory bulb interneurons. Neuron 49, 503–516 (2006).

    Article  CAS  Google Scholar 

  12. Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  Google Scholar 

  13. Hack, M.A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat. Neurosci. 8, 865–872 (2005).

    Article  CAS  Google Scholar 

  14. Roybon, L., Deierborg, T., Brundin, P. & Li, J.Y. Involvement of Ngn2, Tbr and NeuroD proteins during postnatal olfactory bulb neurogenesis. Eur. J. Neurosci. 29, 232–243 (2009).

    Article  Google Scholar 

  15. Young, K.M., Fogarty, M., Kessaris, N. & Richardson, W.D. Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J. Neurosci. 27, 8286–8296 (2007).

    Article  CAS  Google Scholar 

  16. Kohwi, M. et al. A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J. Neurosci. 27, 6878–6891 (2007).

    Article  CAS  Google Scholar 

  17. Kroll, T.T. & O'Leary, D.D. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc. Natl. Acad. Sci. USA 102, 7374–7379 (2005).

    Article  CAS  Google Scholar 

  18. Nikoletopoulou, V. et al. Neurotrophin receptor–mediated death of misspecified neurons generated from embryonic stem cells lacking Pax6. Cell Stem Cell 1, 529–540 (2007).

    Article  CAS  Google Scholar 

  19. Dellovade, T.L., Pfaff, D.W. & Schwanzel-Fukuda, M. Olfactory bulb development is altered in small-eye (Sey) mice. J. Comp. Neurol. 402, 402–418 (1998).

    Article  CAS  Google Scholar 

  20. Schuurmans, C. et al. Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J. 23, 2892–2902 (2004).

    Article  CAS  Google Scholar 

  21. Hevner, R.F., Hodge, R.D., Daza, R.A. & Englund, C. Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci. Res. 55, 223–233 (2006).

    Article  CAS  Google Scholar 

  22. Hevner, R.F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).

    Article  CAS  Google Scholar 

  23. Geschwind, D. GENSAT: a genomic resource for neuroscience research. Lancet Neurol. 3, 82 (2004).

    Article  Google Scholar 

  24. Kowalczyk, T. et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection meurons for all layers of cerebral cortex. Cereb. Cortex 19, 2439–2450 (2009).

    Article  Google Scholar 

  25. Ninkovic, J., Mori, T. & Gotz, M. Distinct modes of neuron addition in adult mouse neurogenesis. J. Neurosci. 27, 10906–10911 (2007).

    Article  CAS  Google Scholar 

  26. Mori, T. et al. Inducible gene deletion in astroglia and radial glia—a valuable tool for functional and lineage analysis. Glia 54, 21–34 (2006).

    Article  Google Scholar 

  27. Liu, X., Wang, Q., Haydar, T.F. & Bordey, A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci. 8, 1179–1187 (2005).

    Article  CAS  Google Scholar 

  28. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).

    Article  CAS  Google Scholar 

  29. López-Bendito, G. et al. Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb. Cortex 14, 1122–1133 (2004).

    Article  Google Scholar 

  30. Berger, J. et al. E1-Ngn2/Cre is a new line for regional activation of Cre recombinase in the developing CNS. Genesis 40, 195–199 (2004).

    Article  CAS  Google Scholar 

  31. Aungst, J.L. et al. Centre-surround inhibition among olfactory bulb glomeruli. Nature 426, 623–629 (2003).

    Article  CAS  Google Scholar 

  32. Gabellec, M.M., Panzanelli, P., Sassoe-Pognetto, M. & Lledo, P.M. Synapse-specific localization of vesicular glutamate transporters in the rat olfactory bulb. Eur. J. Neurosci. 25, 1373–1383 (2007).

    Article  Google Scholar 

  33. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  Google Scholar 

  34. Ohmomo, H. et al. Postnatal changes in expression of vesicular glutamate transporters in the main olfactory bulb of the rat. Neuroscience 160, 419–426 (2009).

    Article  CAS  Google Scholar 

  35. Magavi, S.S., Mitchell, B.D., Szentirmai, O., Carter, B.S. & Macklis, J.D. Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J. Neurosci. 25, 10729–10739 (2005).

    Article  CAS  Google Scholar 

  36. Gascón, S., Paez-Gomez, J.A., Diaz-Guerra, M., Scheiffele, P. & Scholl, F.G. Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons. J. Neurosci. Methods 168, 104–112 (2008).

    Article  Google Scholar 

  37. Berninger, B., Guillemot, F. & Gotz, M. Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells. Eur. J. Neurosci. 25, 2581–2590 (2007).

    Article  Google Scholar 

  38. Pinching, A.J. & Powell, T.P. The neuron types of the glomerular layer of the olfactory bulb. J. Cell Sci. 9, 305–345 (1971).

    CAS  PubMed  Google Scholar 

  39. Jessberger, S. et al. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J. Neurosci. 27, 9400–9407 (2007).

    Article  CAS  Google Scholar 

  40. Eyre, M.D., Kerti, K. & Nusser, Z. Molecular diversity of deep short-axon cells of the rat main olfactory bulb. Eur. J. Neurosci. 29, 1397–1407 (2009).

    Article  Google Scholar 

  41. Murphy, G.J. & Isaacson, J.S. Presynaptic cyclic nucleotide–gated ion channels modulate neurotransmission in the mammalian olfactory bulb. Neuron 37, 639–647 (2003).

    Article  CAS  Google Scholar 

  42. Mouret, A. et al. Learning and survival of newly generated neurons: when time matters. J. Neurosci. 28, 11511–11516 (2008).

    Article  CAS  Google Scholar 

  43. Scardigli, R., Baumer, N., Gruss, P., Guillemot, F. & Le Roux, I. Direct and concentration-dependent regulation of the proneural gene Neurogenin2 by Pax6. Development 130, 3269–3281 (2003).

    Article  CAS  Google Scholar 

  44. Israsena, N., Hu, M., Fu, W., Kan, L. & Kessler, J.A. The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev. Biol. 268, 220–231 (2004).

    Article  CAS  Google Scholar 

  45. Parras, C.M. et al. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 16, 324–338 (2002).

    Article  CAS  Google Scholar 

  46. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    Article  CAS  Google Scholar 

  47. Goings, G.E., Sahni, V. & Szele, F.G. Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res. 996, 213–226 (2004).

    Article  CAS  Google Scholar 

  48. Faiz, M. et al. Substantial migration of SVZ cells to the cortex results in the generation of new neurons in the excitotoxically damaged immature rat brain. Mol. Cell. Neurosci. 38, 170–182 (2008).

    Article  CAS  Google Scholar 

  49. Seibt, J. et al. Neurogenin2 specifies the connectivity of thalamic neurons by controlling axon responsiveness to intermediate target cues. Neuron 39, 439–452 (2003).

    Article  CAS  Google Scholar 

  50. Parras, C.M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Bedogni for invaluable advice on methods and we are particularly grateful to Y. Yanagawa for the Gad67::gfp mice. We would also like to thank T. Simon-Ebert, A. Steiner, T. Öztürk and S. Nestel for excellent technical assistance and S. Bauer for retroviral production. We would also like to thank A. Saghatelyan for invaluable discussions and comments on the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft, including the excellence cluster Center for Integrated Protein Science Munich, by European Transcriptome, Regulome and Cellular Commitment Consortium from the European Union and the Bundesministerium für Bildung und Forschung to M.G., and the Bavarian State Ministry of Sciences, Research and the Arts (ForNeuroCell) to B.B. and M.G. E.W. was supported by a fellowship from the Medical Research Council, I.O. by a fellowship from the John & Lucille van Geest Foundation and O.R. by a grant from the Dr. Scholl Foundation. Research in the laboratory of F.G. is supported by funds from the Medical Research Council and grants from the European Commission Research and Technological Development program. C.P. is presently supported by an AVENIR-contract from Institut national de la santé et de la recherché mèdicale and Fondation de France. R.D.H. is supported by a Heart and Stroke Fund of Canada Research Fellowship. Work done in the laboratory of R.F.H. was supported by grants from the US National Institutes of Health (R01 NS050248 and R01 MH080766).

Author information

Authors and Affiliations

Authors

Contributions

M.S.B., O.R. and R.D.H. made the original observation of glutamatergic progenitors in the SEZ. M.S.B. conducted most of the experiments. J.N., E.W., O.R. and R.D.H. conducted experiments crucial for the identification of adult-generated glutamatergic neurons in the olfactory bulb. I.O. and R.Y. contributed to experiments using Neurog2+/gfp and Tbr2BAC-gfp mice, respectively. A.L. and S.G. designed and produced the viral vectors. F.E. and G.S. provided the Gad65-gfp mice. C.P. contributed with experiments using Ngn2+/gfp and Mash1BAC-gfp mice. F.G. provided the Neurog2gfp/+ and E1–Neurog2-cre mice. M.F. designed the electron-microscopy experiments and analyzed the data. B.B. designed and conducted all of the electrophysiological experiments. R.F.H., O.R. and M.G. supervised the project and designed experiments. M.G. wrote the manuscript. M.S.B., B.B., R.D.H., R.F.H. and O.R. contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Robert F Hevner, Olivier Raineteau or Magdalena Götz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 3208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brill, M., Ninkovic, J., Winpenny, E. et al. Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12, 1524–1533 (2009). https://doi.org/10.1038/nn.2416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing