Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensory transformations and the use of multiple reference frames for reach planning

Abstract

The sensory signals that drive movement planning arrive in a variety of 'reference frames', and integrating or comparing them requires sensory transformations. We propose a model in which the statistical properties of sensory signals and their transformations determine how these signals are used. This model incorporates the patterns of gaze-dependent errors that we found in our human psychophysics experiment when the sensory signals available for reach planning were varied. These results challenge the widely held ideas that error patterns directly reflect the reference frame of the underlying neural representation and that it is preferable to use a single common reference frame for movement planning. We found that gaze-dependent error patterns, often cited as evidence for retinotopic reach planning, can be explained by a transformation bias and are not exclusively linked to retinotopic representations. Furthermore, the presence of multiple reference frames allows for optimal use of available sensory information and explains task-dependent reweighting of sensory signals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reach errors at the center target for an example subject for all trial types.
Figure 2: Average angular reach error across subjects for each trial condition.
Figure 3: The bias and variance injected by sensory transformations in the model.
Figure 4: Model fits for gaze-dependent reach errors.
Figure 5: Reach variability.
Figure 6: Model predictions for data from a previous study8 (a,b,e,f).
Figure 7: Changes in sensory weighting with target modality.

Similar content being viewed by others

References

  1. Schlicht, E.J. & Schrater, P.R. Impact of coordinate transformation uncertainty on human sensorimotor control. J. Neurophysiol. 97, 4203–4214 (2007).

    Article  Google Scholar 

  2. Sober, S.J. & Sabes, P.N. Flexible strategies for sensory integration during motor planning. Nat. Neurosci. 8, 490–497 (2005).

    Article  CAS  Google Scholar 

  3. Buneo, C.A. & Andersen, R.A. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44, 2594–2606 (2006).

    Article  Google Scholar 

  4. Cohen, Y.E. & Andersen, R.A. A common reference frame for movement plans in the posterior parietal cortex. Nat. Rev. Neurosci. 3, 553–562 (2002).

    Article  CAS  Google Scholar 

  5. Engel, K.C., Flanders, M. & Soechting, J.F. Oculocentric frames of reference for limb movement. Arch. Ital. Biol. 140, 211–219 (2002).

    CAS  PubMed  Google Scholar 

  6. Lacquaniti, F. & Caminiti, R. Visuo-motor transformations for arm reaching. Eur. J. Neurosci. 10, 195–203 (1998).

    Article  CAS  Google Scholar 

  7. Soechting, J.F. & Flanders, M. Sensorimotor representations for pointing to targets in three-dimensional space. J. Neurophysiol. 62, 582–594 (1989).

    Article  CAS  Google Scholar 

  8. Beurze, S.M., Van Pelt, S. & Medendorp, W.P. Behavioral reference frames for planning human reaching movements. J. Neurophysiol. 96, 352–362 (2006).

    Article  Google Scholar 

  9. Henriques, D.Y., Klier, E.M., Smith, M.A., Lowy, D. & Crawford, J.D. Gaze-centered remapping of remembered visual space in an open-loop pointing task. J. Neurosci. 18, 1583–1594 (1998).

    Article  CAS  Google Scholar 

  10. Pouget, A., Ducom, J.C., Torri, J. & Bavelier, D. Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83, B1–B11 (2002).

    Article  Google Scholar 

  11. McIntyre, J., Stratta, F. & Lacquaniti, F. Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space. J. Neurophysiol. 78, 1601–1618 (1997).

    Article  CAS  Google Scholar 

  12. Carrozzo, M., McIntyre, J., Zago, M. & Lacquaniti, F. Viewer-centered and body-centered frames of reference in direct visuomotor transformations. Exp. Brain Res. 129, 201–210 (1999).

    Article  CAS  Google Scholar 

  13. McIntyre, J., Stratta, F. & Lacquaniti, F. Short-term memory for reaching to visual targets: psychophysical evidence for body-centered reference frames. J. Neurosci. 18, 8423–8435 (1998).

    Article  CAS  Google Scholar 

  14. Avillac, M., Deneve, S., Olivier, E., Pouget, A. & Duhamel, J.R. Reference frames for representing visual and tactile locations in parietal cortex. Nat. Neurosci. 8, 941–949 (2005).

    Article  CAS  Google Scholar 

  15. Batista, A.P., Buneo, C.A., Snyder, L.H. & Andersen, R.A. Reach plans in eye-centered coordinates. Science 285, 257–260 (1999).

    Article  CAS  Google Scholar 

  16. Batista, A.P. et al. Reference frames for reach planning in macaque dorsal premotor cortex. J. Neurophysiol. 98, 966–983 (2007).

    Article  Google Scholar 

  17. Battaglia-Mayer, A. et al. Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections. Cereb. Cortex 11, 528–544 (2001).

    Article  CAS  Google Scholar 

  18. Buneo, C.A., Jarvis, M.R., Batista, A.P. & Andersen, R.A. Direct visuomotor transformations for reaching. Nature 416, 632–636 (2002).

    Article  CAS  Google Scholar 

  19. Lacquaniti, F., Guigon, E., Bianchi, L., Ferraina, S. & Caminiti, R. Representing spatial information for limb movement: role of area 5 in the monkey. Cereb. Cortex 5, 391–409 (1995).

    Article  CAS  Google Scholar 

  20. Medendorp, W.P., Goltz, H.C., Vilis, T. & Crawford, J.D. Gaze-centered updating of visual space in human parietal cortex. J. Neurosci. 23, 6209–6214 (2003).

    Article  CAS  Google Scholar 

  21. Pesaran, B., Nelson, M.J. & Andersen, R.A. Dorsal premotor neurons encode the relative position of the hand, eye and goal during reach planning. Neuron 51, 125–134 (2006).

    Article  CAS  Google Scholar 

  22. Wu, W. & Hatsopoulos, N. Evidence against a single coordinate system representation in the motor cortex. Exp. Brain Res. 175, 197–210 (2006).

    Article  Google Scholar 

  23. Wu, W. & Hatsopoulos, N.G. Coordinate system representations of movement direction in the premotor cortex. Exp. Brain Res. 176, 652–657 (2007).

    Article  Google Scholar 

  24. Burnod, Y. et al. Parieto-frontal coding of reaching: an integrated framework. Exp. Brain Res. 129, 325–346 (1999).

    Article  CAS  Google Scholar 

  25. Caminiti, R., Ferraina, S. & Mayer, A.B. Visuomotor transformations: early cortical mechanisms of reaching. Curr. Opin. Neurobiol. 8, 753–761 (1998).

    Article  CAS  Google Scholar 

  26. Carrozzo, M. & Lacquaniti, F. A hybrid frame of reference for visuo-manual coordination. Neuroreport 5, 453–456 (1994).

    Article  CAS  Google Scholar 

  27. Bock, O. Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp. Brain Res. 64, 476–482 (1986).

    Article  CAS  Google Scholar 

  28. Knill, D.C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004).

    Article  CAS  Google Scholar 

  29. Blohm, G. & Crawford, J.D. Computations for geometrically accurate visually guided reaching in 3-D space. J. Vis. 7, 1–22 (2007).

    Article  Google Scholar 

  30. van Beers, R.J., Sittig, A.C. & Denier van der Gon, J.J. The precision of proprioceptive position sense. Exp. Brain Res. 122, 367–377 (1998).

    Article  CAS  Google Scholar 

  31. Land, M.F. & Hayhoe, M. In what ways do eye movements contribute to everyday activities? Vision Res. 41, 3559–3565 (2001).

    Article  CAS  Google Scholar 

  32. Balslev, D. & Miall, R.C. Eye position representation in human anterior parietal cortex. J. Neurosci. 28, 8968–8972 (2008).

    Article  CAS  Google Scholar 

  33. Van Pelt, S. & Medendorp, W.P. Updating target distance across eye movements in depth. J. Neurophysiol. 99, 2281–2290 (2008).

    Article  Google Scholar 

  34. Ernst, M.O. & Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

    Article  CAS  Google Scholar 

  35. Helbig, H.B. & Ernst, M.O. Optimal integration of shape information from vision and touch. Exp. Brain Res. 179, 595–606 (2007).

    Article  Google Scholar 

  36. Kording, K.P. & Wolpert, D.M. Probabilistic mechanisms in sensorimotor control. Novartis Found. Symp. 270, 191–198; discussion 198–202, 232–197 (2006).

    PubMed  Google Scholar 

  37. van Beers, R.J., Sittig, A.C. & Gon, J.J. Integration of proprioceptive and visual position-information: an experimentally supported model. J. Neurophysiol. 81, 1355–1364 (1999).

    Article  CAS  Google Scholar 

  38. Yuille, A.L. & Bulthoff, H.H. Bayesian decision theory and psychophysics. in Perception as Bayesian Inference 123–136 (Cambridge University Press, Cambridge, UK, 1996).

    Chapter  Google Scholar 

  39. Henriques, D.Y. & Crawford, J.D. Direction-dependent distortions of retinocentric space in the visuomotor transformation for pointing. Exp. Brain Res. 132, 179–194 (2000).

    Article  CAS  Google Scholar 

  40. Henriques, D.Y. & Crawford, J.D. Role of eye, head and shoulder geometry in the planning of accurate arm movements. J. Neurophysiol. 87, 1677–1685 (2002).

    Article  CAS  Google Scholar 

  41. Lewald, J. & Ehrenstein, W.H. Visual and proprioceptive shifts in perceived egocentric direction induced by eye position. Vision Res. 40, 539–547 (2000).

    Article  CAS  Google Scholar 

  42. Vindras, P., Desmurget, M., Prablanc, C. & Viviani, P. Pointing errors reflect biases in the perception of the initial hand position. J. Neurophysiol. 79, 3290–3294 (1998).

    Article  CAS  Google Scholar 

  43. Soechting, J.F. & Flanders, M. Errors in pointing are due to approximations in sensorimotor transformations. J. Neurophysiol. 62, 595–608 (1989).

    Article  CAS  Google Scholar 

  44. Kording, K.P. & Tenenbaum, J.B. Causal inference in multisensory integration. in NIPS 737–744 (MIT Press, Cambridge, Massachusetts, 2006).

  45. Ahmed, A.A., Wolpert, D.M. & Flanagan, J.R. Flexible representations of dynamics are used in object manipulation. Curr. Biol. 18, 763–768 (2008).

    Article  CAS  Google Scholar 

  46. Kluzik, J., Diedrichsen, J., Shadmehr, R. & Bastian, A.J. Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm? J. Neurophysiol. 100, 1455–1464 (2008).

    Article  Google Scholar 

  47. Battaglia-Mayer, A., Caminiti, R., Lacquaniti, F. & Zago, M. Multiple levels of representation of reaching in the parieto-frontal network. Cereb. Cortex 13, 1009–1022 (2003).

    Article  Google Scholar 

  48. Cohen, Y.E. & Andersen, R.A. Reaches to sounds encoded in an eye-centered reference frame. Neuron 27, 647–652 (2000).

    Article  CAS  Google Scholar 

  49. Mullette-Gillman, O.A., Cohen, Y.E. & Groh, J.M. Eye-centered, head-centered and complex coding of visual and auditory targets in the intraparietal sulcus. J. Neurophysiol. 94, 2331–2352 (2005).

    Article  Google Scholar 

  50. Good, P.I. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses, 2nd edn. (Springer-Verlag, New York, 2000).

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank S.M. Beurze, S. van Pelt, W.P. Medendorp and S.J. Sober for generously providing their data for model comparison. This work was supported by the National Eye Institute (R01 EY-015679), the National Institute of Mental Health (P50 MH77970) and the McKnight Endowment Fund for Neuroscience. L.M.M.M. was supported by a graduate fellowship from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip N Sabes.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Table 1 and Supplementary Sections 1–3 (PDF 3155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGuire, L., Sabes, P. Sensory transformations and the use of multiple reference frames for reach planning. Nat Neurosci 12, 1056–1061 (2009). https://doi.org/10.1038/nn.2357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing