Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sparse temporal coding of elementary tactile features during active whisker sensation

Abstract

How the brain encodes relevant sensory stimuli in the context of active, natural sensation is not known. During active tactile sensation by rodents, whisker movement across surfaces generates complex whisker micro-motion, including discrete, transient slip-stick events, which carry information about surface properties. We simultaneously measured whisker motion and neural activity in somatosensory cortex (S1) in rats whisking across surfaces. Slip-stick motion events were prominently encoded by one or two low-probability, precisely timed spikes in S1 neurons, resulting in a probabilistically sparse ensemble code. Slips could be efficiently decoded from transient, correlated spiking (20-ms time scale) in small (100 neuron) populations. Slip responses contributed substantially to increased firing rate and transient firing synchrony on surfaces, and firing synchrony was an important cue for surface texture. Slips are thus a fundamental encoded tactile feature in natural whisker input streams and are represented by sparse, temporally precise, synchronous spiking in S1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-acceleration, high-velocity whisker slips are prominent during active whisking on surfaces.
Figure 2: Recording configuration and single-unit sorting using tetrodes.
Figure 3: Slips drive sparse, precisely timed spikes in S1 neurons.
Figure 4: Slips drive a substantial fraction of spikes during surface whisking.
Figure 5: Slip responses are sparse and probabilistic.
Figure 6: Encoding of slip properties.
Figure 7: Slips are efficiently represented by transient synchronous activity in small neuronal ensembles.
Figure 8: Coding of slips and surfaces by synchronous firing.

Similar content being viewed by others

References

  1. Luna, R. et al. Neural codes for perceptual discrimination in primary somatosensory cortex. Nat. Neurosci. 8, 1210–1219 (2005).

    Article  CAS  Google Scholar 

  2. Johnson, K.O. & Hsiao, S.S. Neural mechanisms of tactual form and texture perception. Annu. Rev. Neurosci. 15, 227–250 (1992).

    Article  CAS  Google Scholar 

  3. Kleinfeld, D., Ahissar, E. & Diamond, M.E. Active sensation: insights from the rodent vibrissa sensorimotor system. Curr. Opin. Neurobiol. 16, 435–444 (2006).

    Article  CAS  Google Scholar 

  4. Brecht, M. Barrel cortex and whisker-mediated behaviors. Curr. Opin. Neurobiol. 17, 408–416 (2007).

    Article  CAS  Google Scholar 

  5. Petersen, C.C. The functional organization of the barrel cortex. Neuron 56, 339–355 (2007).

    Article  CAS  Google Scholar 

  6. Mountcastle, V.B. The Sensory Hand (Harvard University Press, Cambridge, Massachusetts, 2005).

    Google Scholar 

  7. Mehta, S.B. et al. Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol. 5, e15 (2007).

    Article  Google Scholar 

  8. Knutsen, P.M., Pietr, M. & Ahissar, E. Haptic object localization in the vibrissal system: behavior and performance. J. Neurosci. 26, 8451–8464 (2006).

    Article  CAS  Google Scholar 

  9. Guic-Robles, E., Valdivieso, C. & Guajardo, G. Rats can learn a roughness discrimination using only their vibrissal system. Behav. Brain Res. 31, 285–289 (1989).

    Article  CAS  Google Scholar 

  10. Carvell, G.E. & Simons, D.J. Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10, 2638–2648 (1990).

    Article  CAS  Google Scholar 

  11. Diamond, M.E. et al. 'Where' and 'what' in the whisker sensorimotor system. Nat. Rev. Neurosci. 9, 601–612 (2008).

    Article  CAS  Google Scholar 

  12. Wolfe, J. et al. Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biol. 6, e215 (2008).

    Article  Google Scholar 

  13. Ritt, J.T., Andermann, M.L. & Moore, C.I. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 57, 599–613 (2008).

    Article  CAS  Google Scholar 

  14. Arabzadeh, E., Zorzin, E. & Diamond, M.E. Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol. 3, e17 (2005).

    Article  Google Scholar 

  15. Pinto, D.J., Brumberg, J.C. & Simons, D.J. Circuit dynamics and coding strategies in rodent somatosensory cortex. J. Neurophysiol. 83, 1158–1166 (2000).

    Article  CAS  Google Scholar 

  16. Simons, D.J. Response properties of vibrissa units in rat SI somatosensory neocortex. J. Neurophysiol. 41, 798–820 (1978).

    Article  CAS  Google Scholar 

  17. Kerr, J.N. et al. Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J. Neurosci. 27, 13316–13328 (2007).

    Article  CAS  Google Scholar 

  18. Crochet, S. & Petersen, C.C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610 (2006).

    Article  CAS  Google Scholar 

  19. Stüttgen, M.C. & Schwarz, C. Psychophysical and neurometric detection performance under stimulus uncertainty. Nat. Neurosci. 11, 1091–1099 (2008).

    Article  Google Scholar 

  20. Houweling, A.R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 (2008).

    Article  CAS  Google Scholar 

  21. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  Google Scholar 

  22. Olshausen, B.A. & Field, D.J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    Article  CAS  Google Scholar 

  23. Vinje, W.E. & Gallant, J.L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000).

    Article  CAS  Google Scholar 

  24. Wang, X. et al. Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435, 341–346 (2005).

    Article  CAS  Google Scholar 

  25. Lee, S.H. & Simons, D.J. Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex. J. Neurophysiol. 91, 223–229 (2004).

    Article  Google Scholar 

  26. Fee, M.S., Mitra, P.P. & Kleinfeld, D. Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J. Neurosci. Methods 69, 175–188 (1996).

    Article  CAS  Google Scholar 

  27. Celikel, T., Szostak, V.A. & Feldman, D.E. Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nat. Neurosci. 7, 534–541 (2004).

    Article  CAS  Google Scholar 

  28. Kass, R.E., Ventura, V. & Cai, C. Statistical smoothing of neuronal data. Network 14, 5–15 (2003).

    Article  Google Scholar 

  29. Itoh, H. et al. Correlation of primate caudate neural activity and saccade parameters in reward-oriented behavior. J. Neurophysiol. 89, 1774–1783 (2003).

    Article  Google Scholar 

  30. Moore, C.I. Frequency-dependent processing in the vibrissa sensory system. J. Neurophysiol. 91, 2390–2399 (2004).

    Article  Google Scholar 

  31. Poulet, J.F. & Petersen, C.C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    Article  CAS  Google Scholar 

  32. Prigg, T. et al. Texture discrimination and unit recordings in the rat whisker/barrel system. Physiol. Behav. 77, 671–675 (2002).

    Article  CAS  Google Scholar 

  33. von Heimendahl, M. et al. Neuronal activity in rat barrel cortex underlying texture discrimination. PLoS Biol. 5, e305 (2007).

    Article  Google Scholar 

  34. Krupa, D.J. et al. Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304, 1989–1992 (2004).

    Article  CAS  Google Scholar 

  35. Arabzadeh, E., Petersen, R.S. & Diamond, M.E. Encoding of whisker vibration by rat barrel cortex neurons: implications for texture discrimination. J. Neurosci. 23, 9146–9154 (2003).

    Article  CAS  Google Scholar 

  36. Temereanca, S. & Simons, D.J. Local field potentials and the encoding of whisker deflections by population firing synchrony in thalamic barreloids. J. Neurophysiol. 89, 2137–2145 (2003).

    Article  Google Scholar 

  37. Bruno, R.M. et al. Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex. J. Neurosci. 23, 9565–9574 (2003).

    Article  CAS  Google Scholar 

  38. Fee, M.S., Mitra, P.P. & Kleinfeld, D. Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J. Neurophysiol. 78, 1144–1149 (1997).

    Article  CAS  Google Scholar 

  39. Puccini, G.D., Compte, A. & Maravall, M. Stimulus dependence of barrel cortex directional selectivity. PLoS One 1, e137 (2006).

    Article  Google Scholar 

  40. Britten, K.H. et al. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  41. Waters, J. & Helmchen, F. Background synaptic activity is sparse in neocortex. J. Neurosci. 26, 8267–8277 (2006).

    Article  CAS  Google Scholar 

  42. Bair, W., Zohary, E. & Newsome, W.T. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21, 1676–1697 (2001).

    Article  CAS  Google Scholar 

  43. Panzeri, S. et al. The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29, 769–777 (2001).

    Article  CAS  Google Scholar 

  44. Engel, A.K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001).

    Article  CAS  Google Scholar 

  45. Hromádka, T., Deweese, M.R. & Zador, A.M. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6, e16 (2008).

    Article  Google Scholar 

  46. de Kock, C.P. et al. Layer- and cell type–specific suprathreshold stimulus representation in rat primary somatosensory cortex. J. Physiol. (Lond.) 581, 139–154 (2007).

    Article  CAS  Google Scholar 

  47. Joris, P.X. & Smith, P.H. The volley theory and the spherical cell puzzle. Neuroscience 154, 65–76 (2008).

    Article  CAS  Google Scholar 

  48. Venkatachalam, S., Fee, M.S. & Kleinfeld, D. Ultra-miniature headstage with 6-channel drive and vacuum-assisted micro-wire implantation for chronic recording from the neocortex. J. Neurosci. Methods 90, 37–46 (1999).

    Article  CAS  Google Scholar 

  49. Allen, C.B., Celikel, T. & Feldman, D.E. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat. Neurosci. 6, 291–299 (2003).

    Article  CAS  Google Scholar 

  50. Harris, K.D. et al. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Martin and S. Pahlavan for assistance with behavioral training, and M. DeWeese, B. Olshausen and Y. Dan for comments on an earlier version of the manuscript. This work was supported by a National Science Foundation Integrative Graduate Education and Traineeship fellowship and a Burroughs Wellcome La Jolla Interfaces in Science fellowship (S.P.J.), by National Science Foundation Faculty Early Career Development Award IOB-0546098, National Science Foundation grant #SBE-0542013 to the Temporal Dynamics of Learning Center and a University of California, San Diego Heiligenberg Professorship (D.E.F.).

Author information

Authors and Affiliations

Authors

Contributions

S.P.J., J.W. and D.E.F. designed the experiments. S.P.J. and J.W. performed the experiments. S.P.J. and D.E.F. analyzed the data and wrote the paper. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Daniel E Feldman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Note (PDF 2421 kb)

Supplementary Video 1

Behavior trial showing whisking on surface. Top view of a rat positioning its nose in the nose poke aperture and whisking on a surface with a single intact whisker (D2) on the right side of the face. Nose poke aperture (bright infrared LED, not visible to the rat), surface position (P150 sandpaper) and whisker imaging plane are labeled. At the end of the trial, rat withdraws to the reward chamber. Video is taken at 119 frames per second (fps), and played back at 10 fps. (MPG 3574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadhav, S., Wolfe, J. & Feldman, D. Sparse temporal coding of elementary tactile features during active whisker sensation. Nat Neurosci 12, 792–800 (2009). https://doi.org/10.1038/nn.2328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing