Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Motivation and cognitive control in the human prefrontal cortex

Abstract

The prefrontal cortex (PFC) subserves cognitive control, that is, the ability to select thoughts or actions in relation to internal goals. Little is known, however, about how the PFC combines motivation and the selection processes underlying cognitive control. We used functional magnetic resonance imaging in humans and found that the medial and lateral PFC have a parallel hierarchical organization from posterior to anterior regions for motivating and selecting behaviors, respectively. Moreover, using functional connectivity analyses, we found that functional interactions in this parallel system from medial to lateral PFC regions convey motivational incentives on the basis of rewards/penalties regulating the differential engagement of lateral PFC regions in top-down selection. Our results indicate that motivation is a dissociable function, reveal how the PFC integrates motivation and cognitive control in the service of decision-making, and have major implications for current theories of prefrontal executive function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral protocol.
Figure 2: Cognitive control in the prefrontal cortex.
Figure 3: Motivational processes in the prefrontal cortex.
Figure 4: Motivational effects on reaction times according to control demands.
Figure 5: Motivational activations in medial and lateral frontal regions according to control demands.
Figure 6: Diagram of effective connectivity between frontal regions.
Figure 7: Factorial analyses of medial frontal activations according to cognitive factors.
Figure 8: Variations of effective connectivity with response conflict.

Similar content being viewed by others

References

  1. Miller, E.K. & Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  Google Scholar 

  2. Sakai, K. & Passingham, R.E. Prefrontal interactions reflect future task operations. Nat. Neurosci. 6, 75–81 (2003).

    Article  CAS  Google Scholar 

  3. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003).

    Article  CAS  Google Scholar 

  4. Koechlin, E. & Summerfield, C. An information theoretical approach to prefrontal executive function. Trends Cogn. Sci. 11, 229–235 (2007).

    Article  Google Scholar 

  5. Badre, D. Cognitive control, hierarchy and the rostrocaudal organization of the frontal lobes. Trends Cogn. Sci. (in the press) (2008).

  6. Braver, T.S., Reynolds, J.R. & Donaldson, D.I. Neural mechanisms of transient and sustained cognitive control during task switching. Neuron 39, 713–726 (2003).

    Article  CAS  Google Scholar 

  7. Ridderinkhof, K.R., Ullsperger, M., Crone, E.A. & Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science 306, 443–447 (2004).

    Article  CAS  Google Scholar 

  8. Rushworth, M.F., Walton, M.E., Kennerley, S.W. & Bannerman, D.M. Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8, 410–417 (2004).

    Article  CAS  Google Scholar 

  9. Rushworth, M.F., Buckley, M.J., Behrens, T.E., Walton, M.E. & Bannerman, D.M. Functional organization of the medial frontal cortex. Curr. Opin. Neurobiol. 17, 220–227 (2007).

    Article  CAS  Google Scholar 

  10. Gehring, W.J. & Knight, R.T. Prefrontal-cingulate interactions in action monitoring. Nat. Neurosci. 3, 516–520 (2000).

    Article  CAS  Google Scholar 

  11. Pochon, J.B. et al. The neural system that bridges reward and cognition in humans: an fMRI study. Proc. Natl. Acad. Sci. USA 99, 5669–5674 (2002).

    Article  CAS  Google Scholar 

  12. Kerns, J.G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    Article  CAS  Google Scholar 

  13. Johansen-Berg, H. et al. Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc. Natl. Acad. Sci. USA 101, 13335–13340 (2004).

    Article  CAS  Google Scholar 

  14. Aron, A.R., Behrens, T.E., Smith, S., Frank, M.J. & Poldrack, R.A. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci. 27, 3743–3752 (2007).

    Article  CAS  Google Scholar 

  15. Beckmann, M., Johansen-Berg, H. & Rushworth, M.F. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J. Neurosci. 29, 1175–1190 (2009).

    Article  CAS  Google Scholar 

  16. Hull, C.L. Principles of Behavior (Appleton-Century-Crofts, New York, 1943).

    Google Scholar 

  17. Duffy, E. Activation and Behavior (Wiley, New York, 1962).

    Google Scholar 

  18. Kennerley, S.W., Sakai, K. & Rushworth, M.F. Organization of action sequences and the role of the pre-SMA. J. Neurophysiol. 91, 978–993 (2004).

    Article  Google Scholar 

  19. Lau, H.C., Rogers, R.D., Haggard, P. & Passingham, R.E. Attention to intention. Science 303, 1208–1210 (2004).

    Article  CAS  Google Scholar 

  20. Sumner, P. et al. Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54, 697–711 (2007).

    Article  CAS  Google Scholar 

  21. Isoda, M. & Hikosaka, O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat. Neurosci. 10, 240–248 (2007).

    Article  CAS  Google Scholar 

  22. Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812 (2005).

    Article  CAS  Google Scholar 

  23. Campos, M., Breznen, B., Bernheim, K. & Andersen, R.A. Supplementary motor area encodes reward expectancy in eye-movement tasks. J. Neurophysiol. 94, 1325–1335 (2005).

    Article  CAS  Google Scholar 

  24. Brown, J.W. & Braver, T.S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307, 1118–1121 (2005).

    Article  CAS  Google Scholar 

  25. Matsumoto, K., Suzuki, W. & Tanaka, K. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301, 229–232 (2003).

    Article  CAS  Google Scholar 

  26. Sohn, M.H., Albert, M.V., Jung, K., Carter, C.S. & Anderson, J.R. Anticipation of conflict monitoring in the anterior cingulate cortex and the prefrontal cortex. Proc. Natl. Acad. Sci. USA 104, 10330–10334 (2007).

    Article  CAS  Google Scholar 

  27. Hester, R., Barre, N., Mattingley, J.B., Foxe, J.J. & Garavan, H. Avoiding another mistake: error and post-error neural activity associated with adaptive posterror behavior change. Cogn. Affect. Behav. Neurosci. 7, 317–326 (2007).

    Article  Google Scholar 

  28. Kennerley, S.W., Walton, M.E., Behrens, T.E., Buckley, M.J. & Rushworth, M.F. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9, 940–947 (2006).

    Article  CAS  Google Scholar 

  29. Rushworth, M.F. & Behrens, T.E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  CAS  Google Scholar 

  30. Bartels, A., Logothetis, N.K. & Moutoussis, K. fMRI and its interpretations: an illustration on directional selectivity in area V5/MT. Trends Neurosci. 31, 444–453 (2008).

    Article  CAS  Google Scholar 

  31. Stephan, K.E. On the role of general system theory for functional neuroimaging. J. Anat. 205, 443–470 (2004).

    Article  Google Scholar 

  32. Stephan, K.E. et al. Lateralized cognitive processes and lateralized task control in the human brain. Science 301, 384–386 (2003).

    Article  CAS  Google Scholar 

  33. Nachev, P. Cognition and medial frontal cortex in health and disease. Curr. Opin. Neurol. 19, 586–592 (2006).

    Article  Google Scholar 

  34. Ullsperger, M. & von Cramon, D.Y. Neuroimaging of performance monitoring: error detection and beyond. Cortex 40, 593–604 (2004).

    Article  Google Scholar 

  35. Swick, D. & Turken, A.U. Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 99, 16354–16359 (2002).

    Article  CAS  Google Scholar 

  36. Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S. & Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  Google Scholar 

  37. Carter, C.S. & van Veen, V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn. Affect. Behav. Neurosci. 7, 367–379 (2007).

    Article  Google Scholar 

  38. Hyafil, A., Summerfield, C. & Koechlin, E. Two mechanisms for task switching in the prefrontal cortex. J. Neurosci. 29, 5135–5142 (2009).

    Article  CAS  Google Scholar 

  39. Botvinick, M.M. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn. Affect. Behav. Neurosci. 7, 356–366 (2007).

    Article  Google Scholar 

  40. Hertz, J., Krogh, A. & Palmer, R.G. Introduction to the Theory of Neural Computation (Addison-Wesley Publishing Company, Redwood City, California, 1991).

    Google Scholar 

  41. Friston, K.J. & Stephan, K.E. Free-energy and the brain. Synthese 159, 417–458 (2007).

    Article  Google Scholar 

  42. Shima, K. & Tanji, J. Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J. Neurophysiol. 80, 3247–3260 (1998).

    Article  CAS  Google Scholar 

  43. Rushworth, M.F., Hadland, K.A., Gaffan, D. & Passingham, R.E. The effect of cingulate cortex lesions on task switching and working memory. J. Cogn. Neurosci. 15, 338–353 (2003).

    Article  CAS  Google Scholar 

  44. Shima, K. & Tanji, J. Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282, 1335–1338 (1998).

    Article  CAS  Google Scholar 

  45. Beck, R.C. Motivation: Theories ad Principles (Prentice Hall, New Jersey, 2004).

    Google Scholar 

  46. Genovese, C.R., Lazar, N.A. & Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15, 870–878 (2002).

    Article  Google Scholar 

  47. Mueller, R.O. Basic Principles of Structural Equation Modeling (Springer-Verlag, New York, 1996).

    Book  Google Scholar 

  48. Penny, W.D., Stephan, K.E., Mechelli, A. & Friston, K.J. Modeling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23 Suppl 1: S264–S274 (2004).

    Article  Google Scholar 

  49. Gitelman, D.R., Penny, W.D., Ashburner, J. & Friston, K.J. Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage 19, 200–207 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J.-L. Anton, B. Nazarian and M. Roth at the Magnetic Resonance Imaging Center in Hospital La Timone for MRI facilities and technical assistance. We also thank C. Summerfield and E. Procyk for helpful comments on an earlier version of the manuscript. This work was supported by a European Young Investigator Award and a Prize from the Bettencourt-Schueller Foundation to E.K.

Author information

Authors and Affiliations

Authors

Contributions

F.K. and E.K. designed the experiments. F.K. and S.C. conducted the experiments. F.K. analyzed the data. E.K. supervised the project and wrote the paper.

Corresponding author

Correspondence to Etienne Koechlin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Data and Supplementary Methods (PDF 4304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouneiher, F., Charron, S. & Koechlin, E. Motivation and cognitive control in the human prefrontal cortex. Nat Neurosci 12, 939–945 (2009). https://doi.org/10.1038/nn.2321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing