Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels

Abstract

The processing of synaptic potentials by neuronal dendrites depends on both their passive cable properties and active voltage-gated channels, which can generate complex effects as a result of their nonlinear properties. We characterized the actions of HCN (hyperpolarization-activated cyclic nucleotide-gated cation) channels on dendritic processing of subthreshold excitatory postsynaptic potentials (EPSPs) in mouse CA1 hippocampal neurons. The HCN channels generated an excitatory inward current (Ih) that exerted a direct depolarizing effect on the peak voltage of weak EPSPs, but produced a paradoxical hyperpolarizing effect on the peak voltage of stronger, but still subthreshold, EPSPs. Using a combined modeling and experimental approach, we found that the inhibitory action of Ih was caused by its interaction with the delayed-rectifier M-type K+ current. In this manner, Ih can enhance spike firing in response to an EPSP when spike threshold is low and can inhibit firing when spike threshold is high.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental procedure and the effects of pharmacological blockade of Ih.
Figure 2: Dual effects of Ih on peak voltage of subthreshold EPSPs.
Figure 3: Computational model predicts excitatory role for Ih in the absence of other voltage-gated channels.
Figure 4: Computational model including a Hodgkin-Huxley voltage-gated K+ conductance predicts subthreshold inhibitory effects of Ih on peak voltage of strong EPSPs.
Figure 5: Computational results demonstrating that changes in M-current properties alter the crossover voltage at which Ih first exerts an inhibitory influence on EPSP Vpeak.
Figure 6: Pharmacological blockade of M current caused Ih to have a purely excitatory influence.

Similar content being viewed by others

References

  1. Migliore, M. & Shepherd, G.M. Emerging rules for the distributions of active dendritic conductances. Nat. Rev. Neurosci. 3, 362–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Magee, J.C. & Johnston, D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Losonczy, A. & Magee, J.C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Frick, A., Magee, J. & Johnston, D. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat. Neurosci. 7, 126–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Losonczy, A., Makara, J.K. & Magee, J.C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Ngo-Anh, T.J. et al. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat. Neurosci. 8, 642–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kole, M.H., Hallermann, S. & Stuart, G.J. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J. Neurosci. 26, 1677–1687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lörincz, A., Notomi, T., Tamas, G., Shigemoto, R. & Nusser, Z. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat. Neurosci. 5, 1185–1193 (2002).

    Article  PubMed  Google Scholar 

  10. Magee, J.C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Notomi, T. & Shigemoto, R. Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J. Comp. Neurol. 471, 241–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Lüthi, A. & McCormick, D.A. H-current: properties of a neuronal and network pacemaker. Neuron 21, 9–12 (1998).

    Article  PubMed  Google Scholar 

  13. Robinson, R.B. & Siegelbaum, S.A. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65, 453–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Angelo, K., London, M., Christensen, S.R. & Häusser, M. Local and global effects of I(h) distribution in dendrites of mammalian neurons. J. Neurosci. 27, 8643–8653 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Magee, J.C. Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, S.R. & Stuart, G.J. Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Poolos, N.P., Migliore, M. & Johnston, D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat. Neurosci. 5, 767–774 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Rosenkranz, J.A. & Johnston, D. Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J. Neurosci. 26, 3229–3244 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan, Y. et al. Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih . Nat. Neurosci. 8, 1542–1551 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Narayanan, R. & Johnston, D. Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56, 1061–1075 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nolan, M.F. et al. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119, 719–732 (2004).

    CAS  PubMed  Google Scholar 

  22. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brager, D.H. & Johnston, D. Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in I(h) in hippocampal CA1 pyramidal neurons. J. Neurosci. 27, 13926–13937 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shah, M.M., Anderson, A.E., Leung, V., Lin, X. & Johnston, D. Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 44, 495–508 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koch, C., Bernander, O. & Douglas, R.J. Do neurons have a voltage or a current threshold for action potential initiation? J. Comput. Neurosci. 2, 63–82 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Tsay, D., Dudman, J.T. & Siegelbaum, S.A. HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56, 1076–1089 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Delmas, P. & Brown, D.A. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6, 850–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, M. et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, K. et al. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat. Med. 7, 331–337 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jentsch, T.J. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1, 21–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Peters, H.C., Hu, H., Pongs, O., Storm, J.F. & Isbrandt, D. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat. Neurosci. 8, 51–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Schroeder, B.C., Kubisch, C., Stein, V. & Jentsch, T.J. Moderate loss of function of cyclic AMP–modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396, 687–690 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Chevaleyre, V. & Castillo, P.E. Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proc. Natl. Acad. Sci. USA 99, 9538–9543 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu, N., Vervaeke, K., Hu, H. & Storm, J.F. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J. Physiol. (Lond.) 566, 689–715 (2005).

    Article  CAS  Google Scholar 

  35. Dayan, P. & Abbott, L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, Cambridge, Massachusetts, 2005).

    Google Scholar 

  36. Santoro, B. et al. Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J. Neurosci. 20, 5264–5275 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  38. Chen, X. & Johnston, D. Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus. J. Physiol. (Lond.) 559, 187–203 (2004).

    Article  CAS  Google Scholar 

  39. Hu, H., Vervaeke, K. & Storm, J.F. Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 545, 783–805 (2002).

    Article  CAS  Google Scholar 

  40. Hu, H., Vervaeke, K. & Storm, J.F. M-channels (Kv7/KCNQ channels) that regulate synaptic integration, excitability, and spike pattern of CA1 pyramidal cells are located in the perisomatic region. J. Neurosci. 27, 1853–1867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yue, C. & Yaari, Y. Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. J. Neurophysiol. 95, 3480–3495 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kole, M.H. et al. Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11, 178–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Poirazi, P., Brannon, T. & Mel, B.W. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Vervaeke, K., Gu, N., Agdestein, C., Hu, H. & Storm, J.F. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release. J. Physiol. (Lond.) 576, 235–256 (2006).

    Article  CAS  Google Scholar 

  45. Brown, D.A. & Adams, P.R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283, 673–676 (1980).

    Article  CAS  PubMed  Google Scholar 

  46. Suh, B.C., Inoue, T., Meyer, T. & Hille, B. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454–1457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carnevale, N.T. & Hines, M.L. The NEURON Book (Cambridge University Press, Cambridge, UK, 2006).

    Book  Google Scholar 

Download references

Acknowledgements

We thank J. Dudman for helpful advice and for providing custom data-acquisition routines written in Igor. This work was partially supported by grant MH80745 from the US National Institutes of Health to S.A.S. L.A. and M.S.G. were supported in part by a US National Institutes of Health Director's Pioneer Award, part of the US National Institutes of Health Roadmap for Medical Research, through grant number 5-DP1-OD114-02. M.S.G. was supported in part by Columbia University's Medical Scientist Training Program.

Author information

Authors and Affiliations

Authors

Contributions

M.S.G. performed all experiments, wrote the computer programs, carried out the analysis and wrote the initial draft of the manuscript. L.F.A. and S.A.S. participated in the design of the experiments and modeling studies and helped in the preparation of the final manuscript.

Corresponding author

Correspondence to Steven A Siegelbaum.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 3484 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, M., Abbott, L. & Siegelbaum, S. HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels. Nat Neurosci 12, 577–584 (2009). https://doi.org/10.1038/nn.2307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2307

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing