Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron

Abstract

How active membrane conductance dynamics tunes neurons for specific time-varying stimuli remains poorly understood. We studied the biophysical mechanisms by which spike frequency adaptation shapes visual stimulus selectivity in an identified visual interneuron of the locust. The lobula giant movement detector (LGMD) responds preferentially to objects approaching on a collision course with the locust. Using calcium imaging, pharmacology and modeling, we show that spike frequency adaptation in the LGMD is mediated by a Ca2+-dependent potassium conductance closely resembling those associated with 'small-conductance' (SK) channels. Intracellular block of this conductance minimally affected the LGMD's response to approaching stimuli, but substantially increased its response to translating ones. Thus, spike frequency adaptation contributes to the neuron's tuning by selectively decreasing its responses to nonpreferred stimuli. Our results identify a new mechanism by which spike frequency adaptation may tune visual neurons to behaviorally relevant stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LGMD morphology and response to looming versus translating stimuli.
Figure 2: Spike frequency adaptation in the LGMD results from an SK-like KCa conductance.
Figure 3: Intracellular block of spike frequency adaptation (SFA) in vivo enhances the responses to translating motion.
Figure 4: Block of spike frequency adaptation has little effect on the time-course of looming response.
Figure 5: Calcium entry is confined to a region of the LGMD close to the spike initiation zone during depolarizing current injection.
Figure 6: LGMD compartmental model reproduces in vivo current injection and visual stimulation results, both before and after block of spike frequency adaptation by simulated BAPTA iontophoresis.

Similar content being viewed by others

References

  1. O'Shea, M. & Williams, J.L.D. The anatomy and output connection of a locust visual interneurone: the lobular giant movement detector (LGMD) neurone. J. Comp. Physiol. 91, 257–266 (1974).

    Article  Google Scholar 

  2. Krapp, H.G. & Gabbiani, F. Spatial distribution of inputs and local receptive field properties of a wide-field, looming sensitive neuron. J. Neurophysiol. 93, 2240–2253 (2005).

    Article  Google Scholar 

  3. Burrows, M. The Neurobiology of an Insect Brain (Oxford University Press, Oxford, UK, 1996).

    Book  Google Scholar 

  4. Schlotterer, G.R. Response of the locust descending movement detector neuron to rapidly approaching and withdrawing visual stimuli. Can. J. Zool. 55, 1372–1376 (1977).

    Article  Google Scholar 

  5. Rind, F.C. & Simmons, P.J. Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. J. Neurophysiol. 68, 1654–1666 (1992).

    Article  CAS  Google Scholar 

  6. Simmons, P.J. & Rind, F.C. Orthopteran DCMD neuron: a reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects. J. Neurophysiol. 68, 1667–1682 (1992).

    Article  CAS  Google Scholar 

  7. Judge, S. & Rind, F. The locust DCMD, a movement-detecting neurone tightly tuned to collision trajectories. J. Exp. Biol. 200, 2209–2216 (1997).

    CAS  PubMed  Google Scholar 

  8. Gabbiani, F., Krapp, H.G. & Laurent, G. Computation of object approach by a wide-field, motion-sensitive neuron. J. Neurosci. 19, 1122–1141 (1999).

    Article  CAS  Google Scholar 

  9. Matheson, T., Rogers, S.M. & Krapp, H.G. Plasticity in the visual system is correlated with a change in lifestyle of solitarious and gregarious locusts. J. Neurophysiol. 91, 1–12 (2004).

    Article  Google Scholar 

  10. Fotowat, H. & Gabbiani, F. Relationship between the phases of sensory and motor activity during a looming-evoked multistage escape behavior. J. Neurosci. 27, 10047–10059 (2007).

    Article  CAS  Google Scholar 

  11. Yamamoto, K., Nakata, M. & Nakagawa, H. Input and output characteristics of collision avoidance behavior in the frog Rana catesbeiana. Brain Behav. Evol. 62, 201–211 (2003).

    Article  Google Scholar 

  12. Sun, H. & Frost, B.J. Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat. Neurosci. 1, 296–303 (1998).

    Article  CAS  Google Scholar 

  13. Preuss, T., Osei-Bonsu, P.E., Weiss, S.A., Wang, C. & Faber, D.S. Neural representation of object approach in a decision-making motor circuit. J. Neurosci. 26, 3454–3464 (2006).

    Article  CAS  Google Scholar 

  14. Rowell, C.H.F. & O'Shea, M. The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J. Exp. Biol. 68, 157–185 (1977).

    Google Scholar 

  15. Gabbiani, F., Cohen, I. & Laurent, G. Time-dependent activation of feed-forward inhibition in a looming-sensitive neuron. J. Neurophysiol. 94, 2150–2161 (2005).

    Article  Google Scholar 

  16. Gabbiani, F. & Krapp, H.G. Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. J. Neurophysiol. 96, 2951–2962 (2006).

    Article  Google Scholar 

  17. Peron, S.P., Krapp, H.G. & Gabbiani, F. Influence of electrotonic structure and synaptic mapping on the receptive field properties of a collision-detecting neuron. J. Neurophysiol. 97, 159–177 (2007).

    Article  Google Scholar 

  18. Santer, R.D., Yamawaki, Y., Rind, F.C. & Simmons, P.J. Preparing for escape: an examination of the role of the DCMD neuron in locust escape jumps. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 194, 69–77 (2008).

    Article  Google Scholar 

  19. Rowell, C.H. The orthopteran descending movement detector (DMD) neurones: a characterisation and review. Z. Vergl. Physiol. 73, 167–194 (1971).

    Google Scholar 

  20. Tsien, R.Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404 (1980).

    Article  CAS  Google Scholar 

  21. Stocker, M. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5, 758–770 (2004).

    Article  CAS  Google Scholar 

  22. Sobel, E.C. & Tank, D.W. In Vivo Ca2+ Dynamics in a Cricket Auditory Neuron: An Example of Chemical Computation. Science 263, 823–826 (1994).

    Article  CAS  Google Scholar 

  23. Wang, X.J. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79, 1549–1566 (1998).

    Article  CAS  Google Scholar 

  24. Faber, E.S. & Sah, P. Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9, 181–194 (2003).

    Article  CAS  Google Scholar 

  25. Scott, R.H., Sutton, K.G., Griffin, A., Stapleton, S.R. & Currie, K.P. Aspects of calcium-activated chloride currents: a neuronal perspective. Pharmacol. Ther. 66, 535–565 (1995).

    Article  CAS  Google Scholar 

  26. Bond, C.T., Maylie, J. & Adelman, J.P. SK channels in excitability, pacemaking and synaptic integration. Curr. Opin. Neurobiol. 15, 305–311 (2005).

    Article  CAS  Google Scholar 

  27. Wicher, D., Walther, C. & Wicher, C. Non-synaptic ion channels in insects–basic properties of currents and their modulation in neurons and skeletal muscles. Prog. Neurobiol. 64, 431–525 (2001).

    Article  CAS  Google Scholar 

  28. Heidel, E. & Pflüger, H.J. Ion currents and spiking properties of identified subtypes of locust octopaminergic dorsal unpaired median neurons. Eur. J. Neurosci. 23, 1189–1206 (2006).

    Article  CAS  Google Scholar 

  29. Gu, N., Vervaeke, K. & Storm, J.F. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J. Physiol. (Lond.) 580, 859–882 (2007).

    Article  CAS  Google Scholar 

  30. Killmann, F. & Schürmann, F.W. Both electrical and chemical transmission between the lobula giant movement detector and the descending contralateral movement detector neurons of locusts are supported by electron microscopy. J. Neurocytol. 14, 637–652 (1985).

    Article  CAS  Google Scholar 

  31. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    Article  CAS  Google Scholar 

  32. Peracchia, C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim. Biophys. Acta 1662, 61–80 (2004).

    Article  CAS  Google Scholar 

  33. Gabbiani, F., Krapp, H.G., Koch, C. & Laurent, G. Multiplicative computation in a visual neuron sensitive to looming. Nature 420, 320–324 (2002).

    Article  CAS  Google Scholar 

  34. Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. in Neural Theory and Modeling (ed. R.F. Reiss) (Stanford University Press, Palo Alto, CA, 1964).

    Google Scholar 

  35. Koch, C., Poggio, T. & Torre, V. Retinal ganglion cells: a functional interpretation of dendritic morphology. Phil. Trans. R. Soc. Lond. B 298, 227–263 (1982).

    Article  CAS  Google Scholar 

  36. Bhattacharjee, A. & Kaczmarek, L.K. For K+ channels, Na+ is the new Ca2+. Trends Neurosci. 28, 422–428 (2005).

    Article  CAS  Google Scholar 

  37. Wittekindt, O.H. et al. An Apamin and Scyllatoxin-Insensitive Isoform of the Human SK3 Channel. Mol. Pharmacol. 65, 788–801 (2004).

    Article  CAS  Google Scholar 

  38. Teagarden, M., Atherton, J.F., Bevan, M.D. & Wilson, C.J. Accumulation of cytoplasmic calcium, but not apamin-sensitive afterhyperpolarization current, during high frequency firing in rat subthalamic nucleus cells. J. Physiol. (Lond.) 586, 817–833 (2008).

    Article  CAS  Google Scholar 

  39. Sah, P. Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19, 150–154 (1996).

    Article  CAS  Google Scholar 

  40. Hirschberg, B., Maylie, J., Adelman, J.P. & Marrion, N.V. Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen. Physiol. 111, 565–581 (1998).

    Article  CAS  Google Scholar 

  41. Haag, J. & Borst, A. Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons. J. Neurophysiol. 83, 1039–1051 (2000).

    Article  CAS  Google Scholar 

  42. Single, S. & Borst, A. Different mechanisms of calcium entry within different dendritic compartments. J. Neurophysiol. 87, 1616–1624 (2002).

    Article  CAS  Google Scholar 

  43. Kurtz, R., Dürr, V. & Egelhaaf, M. Dendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo. J. Neurophysiol. 84, 1914–1923 (2000).

    Article  CAS  Google Scholar 

  44. Harris, R.A., O'Carroll, D.C. & Laughlin, S.B. Contrast gain reduction in fly motion adaptation. Neuron 28, 595–606 (2000).

    Article  CAS  Google Scholar 

  45. Ellis, L.D. et al. SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons. J. Neurosci. 27, 9491–9502 (2007).

    Article  CAS  Google Scholar 

  46. Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J. Neurosci. 20, 4286–4299 (2000).

    Article  CAS  Google Scholar 

  47. Wang, X.J., Liu, Y., Sanchez-Vives, M.V. & McCormick, D.A. Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J. Neurophysiol. 89, 3279–3293 (2003).

    Article  Google Scholar 

  48. Migliore, M. & Shepherd, G.M. Emerging rules for the distributions of active dendritic conductances. Nat. Rev. Neurosci. 3, 362–370 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Josic and H. Krapp for comments. This work was supported by grants from the US National Institute of Mental Health. The use of the QNX 6 OS was made possible by QNX Software Systems' Educational Program.

Author information

Authors and Affiliations

Authors

Contributions

S.P. performed the experiments and simulations; S.P. and F.G. wrote the manuscript; F.G. supervised the project.

Corresponding author

Correspondence to Fabrizio Gabbiani.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Methods and Supplementary Pharmacology (PDF 2130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peron, S., Gabbiani, F. Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat Neurosci 12, 318–326 (2009). https://doi.org/10.1038/nn.2259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing