Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Task-specific signal transmission from prefrontal cortex in visual selective attention

Abstract

Our voluntary behaviors are thought to be controlled by top-down signals from the prefrontal cortex that modulate neural processing in the posterior cortices according to the behavioral goal. However, we have insufficient evidence for the causal effect of the top-down signals. We applied a single-pulse transcranial magnetic stimulation over the human prefrontal cortex and measured the strength of the top-down signals as an increase in the efficiency of neural impulse transmission. The impulse induced by the stimulation transmitted to different posterior visual areas depending on the domain of visual features to which subjects attended. We also found that the amount of impulse transmission was associated with the level of attentional preparation and the performance of visual selective-attention tasks, consistent with the causal role of prefrontal top-down signals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design and TMS-induced ERP.
Figure 2: Scalp maps of the TMS effect on ERP.
Figure 3: Mean voltage (top) and z score (bottom) scalp maps representing the difference between long and short CTI trials at 20–40 ms after TMS.
Figure 4: TMS-induced current source density in posterior visual areas.
Figure 5: Effect of virtual lesion of the FEF on the behavioral preparation effect.

Similar content being viewed by others

References

  1. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  2. Kastner, S. & Ungerleider, L.G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).

    Article  CAS  Google Scholar 

  3. Miller, E.K. & Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  Google Scholar 

  4. Corbetta, M. & Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  Google Scholar 

  5. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  Google Scholar 

  6. Reynolds, J.H. & Chelazzi, L. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27, 611–647 (2004).

    Article  CAS  Google Scholar 

  7. Maunsell, J.H. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 (2006).

    Article  CAS  Google Scholar 

  8. Brass, M., Ullsperger, M., Knoesche, T.R., von Cramon, D.Y. & Phillips, N.A. Who comes first? The role of the prefrontal and parietal cortex in cognitive control. J. Cogn. Neurosci. 17, 1367–1375 (2005).

    Article  Google Scholar 

  9. Grent-'t-Jong, T. & Woldorff, M.G. Timing and sequence of brain activity in top-down control of visual-spatial attention. PLoS Biol. 5, e12 (2007).

    Article  Google Scholar 

  10. Buchel, C. & Friston, K.J. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modeling and fMRI. Cereb. Cortex 7, 768–778 (1997).

    Article  CAS  Google Scholar 

  11. Sakai, K. & Passingham, R.E. Prefrontal interactions reflect future task operations. Nat. Neurosci. 6, 75–81 (2003).

    Article  CAS  Google Scholar 

  12. Sakai, K. & Passingham, R.E. Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. J. Neurosci. 26, 1211–1218 (2006).

    Article  CAS  Google Scholar 

  13. Fuster, J.M., Bauer, R.H. & Jervey, J.P. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 330, 299–307 (1985).

    Article  CAS  Google Scholar 

  14. Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999).

    Article  CAS  Google Scholar 

  15. Barcelo, F., Suwazono, S. & Knight, R.T. Prefrontal modulation of visual processing in humans. Nat. Neurosci. 3, 399–403 (2000).

    Article  CAS  Google Scholar 

  16. Taylor, P.C., Nobre, A.C. & Rushworth, M.F. FEF TMS affects visual cortical activity. Cereb. Cortex 17, 391–399 (2007).

    Article  Google Scholar 

  17. Taylor, P.C., Nobre, A.C. & Rushworth, M.F. Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. J. Neurosci. 27, 11343–11353 (2007).

    Article  CAS  Google Scholar 

  18. Moore, T. & Armstrong, K.M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Article  CAS  Google Scholar 

  19. Armstrong, K.M. & Moore, T. Rapid enhancement of visual cortical response discriminability by microstimulation of the frontal eye field. Proc. Natl. Acad. Sci. USA 104, 9499–9504 (2007).

    Article  CAS  Google Scholar 

  20. Silvanto, J., Lavie, N. & Walsh, V. Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J. Neurophysiol. 96, 941–945 (2006).

    Article  Google Scholar 

  21. Grosbras, M.H., Laird, A.R. & Paus, T. Cortical regions involved in eye movements, shifts of attention and gaze perception. Hum. Brain Mapp. 25, 140–154 (2005).

    Article  Google Scholar 

  22. Ilmoniemi, R.J. et al. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8, 3537–3540 (1997).

    Article  CAS  Google Scholar 

  23. Pascual-Leone, A. & Walsh, V. Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292, 510–512 (2001).

    Article  CAS  Google Scholar 

  24. Matsumoto, R. et al. Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain 130, 181–197 (2007).

    Article  Google Scholar 

  25. Pascual-Marqui, R.D. et al. Low-resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res. 90, 169–179 (1999).

    Article  CAS  Google Scholar 

  26. Tootell, R.B. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  27. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  28. Kahkonen, S. et al. Ethanol modulates cortical activity: direct evidence with combined TMS and EEG. Neuroimage 14, 322–328 (2001).

    Article  CAS  Google Scholar 

  29. Grosbras, M.H. & Paus, T. Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J. Cogn. Neurosci. 14, 1109–1120 (2002).

    Article  Google Scholar 

  30. Grosbras, M.H. & Paus, T. Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. Eur. J. Neurosci. 18, 3121–3126 (2003).

    Article  Google Scholar 

  31. O'Shea, J., Muggleton, N.G., Cowey, A. & Walsh, V. Timing of target discrimination in human frontal eye fields. J. Cogn. Neurosci. 16, 1060–1067 (2004).

    Article  Google Scholar 

  32. O'Shea, J., Muggleton, N.G., Cowey, A. & Walsh, V. Human frontal eye fields and spatial priming of pop-out. J. Cogn. Neurosci. 19, 1140–1151 (2007).

    Article  Google Scholar 

  33. Bichot, N.P. & Schall, J.D. Effects of similarity and history on neural mechanisms of visual selection. Nat. Neurosci. 2, 549–554 (1999).

    Article  CAS  Google Scholar 

  34. Thompson, K.G. & Bichot, N.P. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147, 251–262 (2005).

    PubMed  Google Scholar 

  35. Peng, X., Sereno, M.E., Silva, A.K., Lehky, S.R. & Sereno, A.B. Shape selectivity in primate frontal eye field. J. Neurophysiol. 100, 796–814 (2008).

    Article  Google Scholar 

  36. Stanton, G.B., Bruce, C.J. & Goldberg, M.E. Topography of projections to posterior cortical areas from the macaque frontal eye fields. J. Comp. Neurol. 353, 291–305 (1995).

    Article  CAS  Google Scholar 

  37. Egner, T. et al. Neural integration of top-down spatial and feature-based information in visual search. J. Neurosci. 28, 6141–6151 (2008).

    Article  CAS  Google Scholar 

  38. Lakatos, P., Chen, C.M., O'Connell, M.N., Mills, A. & Schroeder, C.E. Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53, 279–292 (2007).

    Article  CAS  Google Scholar 

  39. Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I. & Schroeder, C.E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008).

    Article  CAS  Google Scholar 

  40. Horwitz, B. et al. Investigating the neural basis for functional and effective connectivity. Application to fMRI. Phil. Trans. R. Soc. Lond. B 360, 1093–1108 (2005).

    Article  Google Scholar 

  41. Fuggetta, G., Pavone, E.F., Walsh, V., Kiss, M. & Eimer, M. Cortico-cortical interactions in spatial attention: a combined ERP/TMS study. J. Neurophysiol. 95, 3277–3280 (2006).

    Article  Google Scholar 

  42. Massimini, M. et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005).

    Article  CAS  Google Scholar 

  43. Khayat, P.S., Spekreijse, H. & Roelfsema, P.R. Attention lights up new object representations before the old ones fade away. J. Neurosci. 26, 138–142 (2006).

    Article  CAS  Google Scholar 

  44. Roelfsema, P.R., Tolboom, M. & Khayat, P.S. Different processing phases for features, figures and selective attention in the primary visual cortex. Neuron 56, 785–792 (2007).

    Article  CAS  Google Scholar 

  45. Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8, 551–565 (1996).

    Article  Google Scholar 

  46. Bradley, M.M., Miccoli, L., Escrig, M.A. & Lang, P.J. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45, 602–607 (2008).

    Article  Google Scholar 

  47. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  Google Scholar 

  48. Nikouline, V., Ruohonen, J. & Ilmoniemi, R.J. The role of the coil click in TMS assessed with simultaneous EEG. Clin. Neurophysiol. 110, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  49. Towle, V.L. et al. The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr. Clin. Neurophysiol. 86, 1–6 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Okamoto and N. Yamamoto for assistance with EEG recording. This work was supported by a Grant-in-Aid for Scientific Research (A) and a Grant-in-Aid for Young Scientists (S) from the Japan Society for the Promotion of Science, and a Grant-in-Aid from the Center of Excellence Program, Center for Brain Medical Science, from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. designed the task, conducted the experiments and analyzed the data. R.A., Y.Y., J.O. and K.T. contributed to the experiments and analysis. K.S. conceptualized the original idea for the study. Y.M. and K.S. wrote the paper.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Data (PDF 3872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morishima, Y., Akaishi, R., Yamada, Y. et al. Task-specific signal transmission from prefrontal cortex in visual selective attention. Nat Neurosci 12, 85–91 (2009). https://doi.org/10.1038/nn.2237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing