Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Focal transplantation–based astrocyte replacement is neuroprotective in a model of motor neuron disease

Abstract

Cellular abnormalities in amyotrophic lateral sclerosis (ALS) are not limited to motor neurons. Astrocyte dysfunction also occurs in human ALS and transgenic rodents expressing mutant human SOD1 protein (SOD1G93A). Here we investigated focal enrichment of normal astrocytes using transplantation of lineage-restricted astrocyte precursors, called glial-restricted precursors (GRPs). We transplanted GRPs around cervical spinal cord respiratory motor neuron pools, the principal cells whose dysfunction precipitates death in ALS. GRPs survived in diseased tissue, differentiated efficiently into astrocytes and reduced microgliosis in the cervical spinal cords of SOD1G93A rats. GRPs also extended survival and disease duration, attenuated motor neuron loss and slowed declines in forelimb motor and respiratory physiological functions. Neuroprotection was mediated in part by the primary astrocyte glutamate transporter GLT1. These findings indicate the feasibility and efficacy of transplantation-based astrocyte replacement and show that targeted multisegmental cell delivery to the cervical spinal cord is a promising therapeutic strategy for slowing focal motor neuron loss associated with ALS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GRP transplants robustly survived and migrated in the cervical spinal cords of SOD1G93A rats.
Figure 2: GRP transplants efficiently differentiated into astrocytes and spatially interacted with host ventral horn motor neurons in SOD1G93A cervical spinal cords.
Figure 3: After transplantation into the cervical spinal cords of SOD1G93A rats, transplanted GRPs extended survival and disease duration and slowed declines in forelimb grip strength and motor performance.
Figure 4: After transplantation into cervical spinal cords of SOD1G93A rats, GRPs partially slowed cervical spinal cord motor neuron and GLT1 protein loss, as well as the decline in phrenic nerve CMAPs.
Figure 5: GRP transplants decreased ventral horn microgliosis.

Similar content being viewed by others

References

  1. Bruijn, L.I., Miller, T.M. & Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749 (2004).

    Article  CAS  Google Scholar 

  2. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  Google Scholar 

  3. Bruijn, L.I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  Google Scholar 

  4. Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  Google Scholar 

  5. Wong, P.C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  Google Scholar 

  6. Howland, D.S. et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant–mediated amyotrophic lateral sclerosis (ALS). Proc. Natl. Acad. Sci. USA 99, 1604–1609 (2002).

    Article  CAS  Google Scholar 

  7. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006).

    Article  CAS  Google Scholar 

  8. Clement, A.M. et al. Wild-type non-neuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  Google Scholar 

  9. Di Giorgio, F.P., Carrasco, M.A., Siao, M.C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell–based ALS model. Nat. Neurosci. 10, 608–614 (2007).

    Article  CAS  Google Scholar 

  10. Lino, M.M., Schneider, C. & Caroni, P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci. 22, 4825–4832 (2002).

    Article  CAS  Google Scholar 

  11. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622 (2007).

    Article  CAS  Google Scholar 

  12. Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. & Rouleau, G.A. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci. 21, 3369–3374 (2001).

    Article  CAS  Google Scholar 

  13. Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 11, 251–253 (2008).

    Article  CAS  Google Scholar 

  14. Pekny, M. & Nilsson, M. Astrocyte activation and reactive gliosis. Glia 50, 427–434 (2005).

    Article  Google Scholar 

  15. Rothstein, J.D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  Google Scholar 

  16. Rothstein, J.D. et al. Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725 (1994).

    Article  CAS  Google Scholar 

  17. Maragakis, N.J. & Rothstein, J.D. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol. 2, 679–689 (2006).

    Article  CAS  Google Scholar 

  18. Rothstein, J.D., Van Kammen, M., Levey, A.I., Martin, L.J. & Kuncl, R.W. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 73–84 (1995).

    Article  CAS  Google Scholar 

  19. Rao, M.S. & Mayer-Proschel, M. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev. Biol. 188, 48–63 (1997).

    Article  CAS  Google Scholar 

  20. Rao, M.S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl. Acad. Sci. USA 95, 3996–4001 (1998).

    Article  CAS  Google Scholar 

  21. Llado, J. et al. Degeneration of respiratory motor neurons in the SOD1 G93A transgenic rat model of ALS. Neurobiol. Dis. 21, 110–118 (2006).

    Article  CAS  Google Scholar 

  22. Tankersley, C.G., Haenggeli, C. & Rothstein, J.D. Respiratory impairment in a mouse model of amyotrophic lateral sclerosis. J. Appl. Physiol. 102, 926–932 (2007).

    Article  Google Scholar 

  23. Matsumoto, A. et al. Disease progression of human SOD1 (G93A) transgenic ALS model rats. J. Neurosci. Res. 83, 119–133 (2006).

    Article  CAS  Google Scholar 

  24. Maragakis, N.J. et al. Glial restricted precursors protect against chronic glutamate neurotoxicity of motor neurons in vitro. Glia 50, 145–159 (2005).

    Article  Google Scholar 

  25. Mitsui, T., Fischer, I., Shumsky, J.S. & Murray, M. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats. Exp. Neurol. 194, 410–431 (2005).

    Article  CAS  Google Scholar 

  26. Maragakis, N.J. & Rothstein, J.D. Glutamate transporters: animal models to neurologic disease. Neurobiol. Dis. 15, 461–473 (2004).

    Article  CAS  Google Scholar 

  27. Federici, T. & Boulis, N.M. Gene-based treatment of motor neuron diseases. Muscle Nerve 33, 302–323 (2006).

    Article  CAS  Google Scholar 

  28. Rothstein, J.D., Martin, L.J. & Kuncl, R.W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464–1468 (1992).

    Article  CAS  Google Scholar 

  29. Rothstein, J.D. et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73–77 (2005).

    Article  CAS  Google Scholar 

  30. Kiaei, M., Kipiani, K., Chen, J., Calingasan, N.Y. & Beal, M.F. Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 191, 331–336 (2005).

    Article  CAS  Google Scholar 

  31. Sofroniew, M.V. Reactive astrocytes in neural repair and protection. Neuroscientist 11, 400–407 (2005).

    Article  CAS  Google Scholar 

  32. Deshpande, D.M. et al. Recovery from paralysis in adult rats using embryonic stem cells. Ann. Neurol. 60, 32–44 (2006).

    Article  CAS  Google Scholar 

  33. Harper, J.M. et al. Axonal growth of embryonic stem cell–derived motoneurons in vitro and in motoneuron-injured adult rats. Proc. Natl. Acad. Sci. USA 101, 7123–7128 (2004).

    Article  CAS  Google Scholar 

  34. Kerr, D.A. et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J. Neurosci. 23, 5131–5140 (2003).

    Article  CAS  Google Scholar 

  35. Wu, P. et al. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rats. Nat. Neurosci. 5, 1271–1278 (2002).

    Article  CAS  Google Scholar 

  36. Aebischer, P. et al. Gene therapy for amyotrophic lateral sclerosis (ALS) using a polymer encapsulated xenogenic cell line engineered to secrete hCNTF. Hum. Gene Ther. 7, 851–860 (1996).

    Article  CAS  Google Scholar 

  37. Aebischer, P. et al. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat. Med. 2, 696–699 (1996).

    Article  CAS  Google Scholar 

  38. Corti, S. et al. Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127, 2518–2532 (2004).

    Article  Google Scholar 

  39. Corti, S. et al. Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain 130, 1289–1305 (2007).

    Article  Google Scholar 

  40. Garbuzova-Davis, S. et al. Intraspinal implantation of hNT neurons into SOD1 mice with apparent motor deficit. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2, 175–180 (2001).

    Article  CAS  Google Scholar 

  41. Garbuzova-Davis, S. et al. Positive effect of transplantation of hNT neurons (NTera 2/D1 cell line) in a model of familial amyotrophic lateral sclerosis. Exp. Neurol. 174, 169–180 (2002).

    Article  Google Scholar 

  42. Garbuzova-Davis, S. et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration and differentiation. J. Hematother. Stem Cell Res. 12, 255–270 (2003).

    Article  CAS  Google Scholar 

  43. Hemendinger, R. et al. Sertoli cells improve survival of motor neurons in SOD1 transgenic mice, a model of amyotrophic lateral sclerosis. Exp. Neurol. 196, 235–243 (2005).

    Article  CAS  Google Scholar 

  44. Llado, J., Haenggeli, C., Maragakis, N.J., Snyder, E.Y. & Rothstein, J.D. Neural stem cells protect against glutamate-induced excitotoxicity and promote survival of injured motor neurons through the secretion of neurotrophic factors. Mol. Cell. Neurosci. 27, 322–331 (2004).

    Article  CAS  Google Scholar 

  45. Martin, L.J. & Liu, Z. Adult olfactory bulb neural precursor cell grafts provide temporary protection from motor neuron degeneration, improve motor function and extend survival in amyotrophic lateral sclerosis mice. J. Neuropathol. Exp. Neurol. 66, 1002–1018 (2007).

    Article  CAS  Google Scholar 

  46. Xu, L. et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 82, 865–875 (2006).

    Article  Google Scholar 

  47. Yan, J. et al. Combined immunosuppressive agents or CD4 antibodies prolong survival of human neural stem cell grafts and improve disease outcomes in amyotrophic lateral sclerosis transgenic mice. Stem Cells 24, 1976–1985 (2006).

    Article  CAS  Google Scholar 

  48. Klein, S.M. et al. GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum. Gene Ther. 16, 509–521 (2005).

    Article  CAS  Google Scholar 

  49. Suzuki, M. et al. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS ONE 2, e689 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all members of the Maragakis and Rothstein labs for helpful discussion and K. Tanaka for providing GLT1-null mice. This work was supported by the Robert Packard Center for ALS Research (to N.J.M.), the ALS Association (to N.J.M.) and the National Institutes of Health (F32-NS059155 to A.C.L., R01-NS33958 to J.D.R. and R01-NS41680 to J.D.R. and N.J.M.).

Author information

Authors and Affiliations

Authors

Contributions

A.C.L. designed and conducted the experiments, analyzed the data, prepared the figures and wrote the manuscript. N.J.M. supervised the project and participated in designing experiments and writing the manuscript. M.S.R. and J.D.R. participated in designing experiments and writing the manuscript. B.R., A.C.P. and C.D. conducted experiments.

Corresponding author

Correspondence to Nicholas J Maragakis.

Ethics declarations

Competing interests

M.S.R. works for Invitrogen, which is a supplier of reagents to the stem cell research communuty. M.S.R. was a scientific founder of Q Therapeutics, Inc. and is a non-paid scientific consultant. J.D.R. is a consultant to Ruxton Pharmaceuticals. N.J.M. is a non-paid scientific consultant to Q Therapeutics, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 296 kb)

Supplementary Text and Figures

Supplementary Video 1 (AVI 12288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepore, A., Rauck, B., Dejea, C. et al. Focal transplantation–based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 11, 1294–1301 (2008). https://doi.org/10.1038/nn.2210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing