Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain

Abstract

Neurogenesis occurs continuously in the forebrain of adult mammals, but the functional importance of adult neurogenesis is still unclear. Here, using a genetic labeling method in adult mice, we found that continuous neurogenesis results in the replacement of the majority of granule neurons in the olfactory bulb and a substantial addition of granule neurons to the hippocampal dentate gyrus. Genetic ablation of newly formed neurons in adult mice led to a gradual decrease in the number of granule cells in the olfactory bulb, inhibition of increases in the granule cell number in the dentate gyrus and impairment of behaviors in contextual and spatial memory, which are known to depend on hippocampus. These results suggest that continuous neurogenesis is required for the maintenance and reorganization of the whole interneuron system in the olfactory bulb, the modulation and refinement of the existing neuronal circuits in the dentate gyrus and the normal behaviors involved in hippocampal-dependent memory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tamoxifen-induced Cre recombinase activity in adult NSCs in the SVZ of the lateral ventricles of Nes-CreERT2 mice.
Figure 2: Continuous adult neurogenesis in the olfactory bulb visualized by long-term labeling of NSCs.
Figure 3: Ablation of neurogenesis decreases the number of granule cells in the olfactory bulb.
Figure 4: Similar survival of early born granule cells in oil- and tamoxifen-treated Line 5-1/NSE-DTA mice.
Figure 5: Ablation of newly formed neurons does not affect discrimination and memory of odors.
Figure 6: Continuous adult neurogenesis in the dentate gyrus visualized by long-term labeling of NSCs.
Figure 7: Ablation of neurogenesis inhibits the increase of the granule cell number in the dentate gyrus.
Figure 8: Ablation of newly formed neurons impairs retention of spatial memory.

Similar content being viewed by others

References

  1. Alvarez-Buylla, A., Garcia-Verdugo, J.M. & Tramontin, A.D. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  2. Doetsch, F. The glial identity of neural stem cells. Nat. Neurosci. 6, 1127–1134 (2003).

    Article  CAS  Google Scholar 

  3. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  4. McKay, R. Stem cell in the central nervous system. Science 276, 66–71 (1997).

    Article  CAS  Google Scholar 

  5. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  Google Scholar 

  6. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).

    Article  CAS  Google Scholar 

  7. Rosselli-Austin, L. & Altman, J. The postnatal development of the main olfactory bulb of the rat. J. Dev. Physiol. 1, 295–313 (1979).

    CAS  PubMed  Google Scholar 

  8. Kaplan, M.S., McNelly, N.A. & Hinds, J.W. Population dynamics of adult-formed granule neurons of the rat olfactory bulb. J. Comp. Neurol. 239, 117–125 (1985).

    Article  CAS  Google Scholar 

  9. Biebl, M., Cooper, C.M., Winkler, J. & Kuhn, H.G. Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci. Lett. 291, 17–20 (2000).

    Article  CAS  Google Scholar 

  10. Petreanu, L. & Alvarez-Buylla, A. Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J. Neurosci. 22, 6106–6133 (2002).

    Article  CAS  Google Scholar 

  11. Bayer, S.A., Yackel, J.W. & Puri, P.S. Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216, 890–892 (1982).

    Article  CAS  Google Scholar 

  12. Boss, B.D., Peterson, G.M. & Cowan, M. On the number of neurons in the dentate gyrus of the rat. Brain Res. 338, 144–150 (1985).

    Article  CAS  Google Scholar 

  13. Crespo, D., Stanfield, B.B. & Cowan, W.M. Evidence that late-generated granule cells do not simply replace earlier formed neurons in the rat dentate gyrus. Exp. Brain Res. 62, 541–548 (1986).

    Article  CAS  Google Scholar 

  14. Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M. & Gage, F.H. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130, 391–399 (2003).

    Article  CAS  Google Scholar 

  15. Dayer, A.G., Ford, A.A., Cleaver, K.M., Yassaee, M. & Cameron, H. Short-term and long-term survival of new neurons in the rat dentate gyrus. J. Comp. Neurol. 460, 563–572 (2003).

    Article  Google Scholar 

  16. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

    Article  CAS  Google Scholar 

  17. Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A. & Lledo, P.-M. Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci. 6, 507–518 (2003).

    Article  CAS  Google Scholar 

  18. Kee, N., Teixeira, C.M., Wang, A.H. & Frankland, P.W. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci. 10, 355–362 (2007).

    Article  CAS  Google Scholar 

  19. Gould, E. How widespread is adult neurogenesis in mammals? Nat. Rev. Neurosci. 8, 481–488 (2007).

    Article  CAS  Google Scholar 

  20. Kempermann, G., Brandon, E.P. & Gage, F.H. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr. Biol. 8, 939–942 (1998).

    Article  CAS  Google Scholar 

  21. Raber, J. et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat. Res. 162, 39–47 (2004).

    Article  CAS  Google Scholar 

  22. Shors, T.J., Townsend, D.A., Zhao, M., Kozorovitskiy, Y. & Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12, 578–584 (2002).

    Article  Google Scholar 

  23. Saxe, M.D. et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc. Natl. Acad. Sci. USA 103, 17501–17506 (2006).

    Article  CAS  Google Scholar 

  24. Silva, A.J. et al. Mutant mice and neuroscience: recommendations concerning genetic background. Neuron 19, 755–759 (1997).

    Article  Google Scholar 

  25. Lagace, D.C. et al. Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J. Neurosci. 27, 12623–12629 (2007).

    Article  CAS  Google Scholar 

  26. Balordi, F. & Fishell, G. Mosaic removal of hedgehog signaling in the adult SVZ reveals that the residual wild-type stem cells have a limited capacity for self-renewal. J. Neurosci. 27, 14248–14259 (2007).

    Article  CAS  Google Scholar 

  27. Imayoshi, I., Ohtsuka, T., Metzger, D., Chambon, P. & Kageyama, R. Temporal regulation of Cre recombinase activity in neural stem cells. Genesis 44, 233–238 (2006).

    Article  CAS  Google Scholar 

  28. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  29. Parras, C.M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

    Article  CAS  Google Scholar 

  30. Lemasson, M., Saghatelyan, A., Olivo-Marin, J.-C. & Lledo, P.-M. Neonatal and adult neurogenesis provide two distinct populations of newborn neurons to the mouse olfactory bulb. J. Neurosci. 25, 6816–6825 (2005).

    Article  CAS  Google Scholar 

  31. Kobayakawa, K. et al. Innate versus learned odour processing in the mouse olfactory bulb. Nature 450, 503–508 (2007).

    Article  CAS  Google Scholar 

  32. Ahn, S. & Joyner, A.L. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437, 894–897 (2005).

    Article  CAS  Google Scholar 

  33. Ninkovic, J., Mori, T. & Götz, M. Distinct modes of neuron addition in adult mouse neurogenesis. J. Neurosci. 27, 10906–10911 (2007).

    Article  CAS  Google Scholar 

  34. Kuhn, H.G., Dickinson-Anson, H. & Gage, F.H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).

    Article  CAS  Google Scholar 

  35. Kempermann, G., Kuhn, H.G. & Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    Article  CAS  Google Scholar 

  36. Snyder, J.S., Hong, N.S., McDonald, R.J. & Wojtowicz, J.M. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130, 843–852 (2005).

    Article  CAS  Google Scholar 

  37. Zhao, C., Teng, E.M., Summers, R.G. Jr, Ming, G.L. & Gage, F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    Article  CAS  Google Scholar 

  38. Lledo, P.M., Alonso, M. & Grubb, M.S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7, 179–193 (2006).

    Article  CAS  Google Scholar 

  39. Winner, B., Cooper-Kuhn, C.M., Aigner, R., Winkler, J. & Kuhn, H.G. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur. J. Neurosci. 16, 1681–1689 (2002).

    Article  Google Scholar 

  40. Alonso, M. et al. Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J. Neurosci. 26, 10508–10513 (2006).

    Article  CAS  Google Scholar 

  41. Yamaguchi, M. & Mori, K. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc. Natl. Acad. Sci. USA 102, 9697–9702 (2005).

    Article  CAS  Google Scholar 

  42. Dusek, J.A. & Eichenbaum, H. The hippocampus and memory for orderly stimulus relations. Proc. Natl. Acad. Sci. USA 94, 7109–7114 (1997).

    Article  CAS  Google Scholar 

  43. Gheusi, G. et al. Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc. Natl. Acad. Sci. USA 97, 1823–1828 (2000).

    Article  CAS  Google Scholar 

  44. Bruce, H.M. An exteroceptive block to pregnancy in the mouse. Nature 184, 105 (1959).

    Article  CAS  Google Scholar 

  45. Kaplan, M.S. Neurogenesis in the 3-month-old rat visual cortex. J. Comp. Neurol. 195, 323–338 (1981).

    Article  CAS  Google Scholar 

  46. Magavi, S.S., Leavitt, B.R. & Macklis, J.D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    Article  CAS  Google Scholar 

  47. Jackson, E.L. et al. PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199 (2006).

    Article  CAS  Google Scholar 

  48. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  49. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  Google Scholar 

  50. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C.G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Soriano, F. Costantini and C. Lobe for materials, and K. Nakanishi, N. Tsunekawa, M. Hayashi, M. Fujioka, H. Kohda and K. Okamoto-Furuta for technical help. This work was supported by Grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan. I.I. was supported by the 21st Century Center of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan and Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Contributions

I.I. conducted the experiments. I.I., M.S., M.Y. and K.M. carried out analysis on odorant discrimination and memory. I.I., K.T. and T.M. performed analysis on other behavioral tests. T.I. and S.I. provided the NSE-DTA mice. T.O. and R.K. supervised the project. I.I. and R.K. wrote the manuscript.

Corresponding author

Correspondence to Ryoichiro Kageyama.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Tables 1–5 and Supplementary Methods (PDF 2613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imayoshi, I., Sakamoto, M., Ohtsuka, T. et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11, 1153–1161 (2008). https://doi.org/10.1038/nn.2185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing