Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Fluorogenic probes for live-cell imaging of the cytoskeleton

Abstract

We introduce far-red, fluorogenic probes that combine minimal cytotoxicity with excellent brightness and photostability for fluorescence imaging of actin and tubulin in living cells. Applied in stimulated emission depletion (STED) microscopy, they reveal the ninefold symmetry of the centrosome and the spatial organization of actin in the axon of cultured rat neurons with a resolution unprecedented for imaging cytoskeletal structures in living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SiR-tubulin and SiR-actin.
Figure 2: Live-cell STED microscopy with SiR-tubulin and SiR-actin.

Similar content being viewed by others

References

  1. Barasoain, I., Díaz, J.F. & Andreu, J.M. Methods Cell Biol. 95, 353–372 (2010).

    Article  CAS  Google Scholar 

  2. Huang, Z.J., Haugland, R.P. & You, W.M. Anal. Biochem. 200, 199–204 (1992).

    Article  CAS  Google Scholar 

  3. Wulf, E., Deboben, A., Bautz, F.A., Faulstich, H. & Wieland, T. Proc. Natl. Acad. Sci. USA 76, 4498–4502 (1979).

    Article  CAS  Google Scholar 

  4. Díaz, J.F., Barasoain, I., Souto, A.A., Amat-Guerri, F. & Andreu, J.M. J. Biol. Chem. 280, 3928–3937 (2005).

    Article  Google Scholar 

  5. Lukinavičius, G. et al. Nat. Chem. 5, 132–139 (2013).

    Article  Google Scholar 

  6. Dubois, J. et al. Bioorg. Med. Chem. 3, 1357–1368 (1995).

    Article  CAS  Google Scholar 

  7. Milroy, L.G. et al. J. Am. Chem. Soc. 134, 8480–8486 (2012).

    Article  CAS  Google Scholar 

  8. Bellamy, W.T. Annu. Rev. Pharmacol. Toxicol. 36, 161–183 (1996).

    Article  CAS  Google Scholar 

  9. Cortes, J.E. & Pazdur, R. J. Clin. Oncol. 13, 2643–2655 (1995).

    Article  CAS  Google Scholar 

  10. Bubb, M.R., Senderowicz, A.M., Sausville, E.A., Duncan, K.L. & Korn, E.D. J. Biol. Chem. 269, 14869–14871 (1994).

    CAS  PubMed  Google Scholar 

  11. Steigemann, P. et al. Cell 136, 473–484 (2009).

    Article  Google Scholar 

  12. Schneckenburger, H. et al. J. Microsc. 245, 311–318 (2012).

    Article  CAS  Google Scholar 

  13. Gustafsson, M.G. J. Microsc. 198, 82–87 (2000).

    Article  CAS  Google Scholar 

  14. Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  Google Scholar 

  15. Hell, S.W. & Wichmann, J. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  Google Scholar 

  16. Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. J. Struct. Biol. 108, 107–128 (1992).

    Article  CAS  Google Scholar 

  17. Kitagawa, D. et al. Cell 144, 364–375 (2011).

    Article  CAS  Google Scholar 

  18. Xu, K., Zhong, G. & Zhuang, X. Science 339, 452–456 (2013).

    Article  CAS  Google Scholar 

  19. Riedl, J. et al. Nat. Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

  20. Bonne, D., Heuséle, C., Simon, C. & Pantaloni, D. J. Biol. Chem. 260, 2819–2825 (1985).

    CAS  PubMed  Google Scholar 

  21. Cooper, J.A., Walker, S.B. & Pollard, T.D. J. Muscle Res. Cell Motil. 4, 253–262 (1983).

    Article  CAS  Google Scholar 

  22. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. & Robins, R.K. J. Chem. Inf. Comput. Sci. 29, 163–172 (1989).

    Article  CAS  Google Scholar 

  23. Byers, T.J. & Branton, D. Proc. Natl. Acad. Sci. USA 82, 6153–6157 (1985).

    Article  CAS  Google Scholar 

  24. Behnke, O. J. Ultrastruct. Res. 31, 61–75 (1970).

    Article  CAS  Google Scholar 

  25. Urban, N.T., Willig, K.I., Hell, S.W. & Nägerl, U.V. Biophys. J. 101, 1277–1284 (2011).

    Article  CAS  Google Scholar 

  26. Held, M. et al. Nat. Methods 7, 747–754 (2010).

    Article  CAS  Google Scholar 

  27. Göttfert, F. et al. Biophys. J. 105, L01–L03 (2013).

    Article  Google Scholar 

  28. Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J.E. Bear (University of North Carolina at Chapel Hill), P. Gönczy (École Polytechnique Fédérale de Lausanne (EPFL)), R. Jahn (University of Göttingen), D. Abankwa (Åbo Akademi University), U. Ruegg (University of Geneva) and A. Seitz (EPFL) for sharing reagents and for technical assistance. K.J. acknowledges support from the Swiss National Science Foundation and the National Centre of Competence of Research (NCCR) Chemical Biology. Support from the Körber foundation was received through the European Science Prize to S.W.H. D.W.G. acknowledges support from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreements nos. 241548 (MitoSys) and 258068 (Systems Microscopy) and from an European Research Council (ERC) Starting Grant (agreement no. 281198).

Author information

Authors and Affiliations

Authors

Contributions

G.L., L.R. and K.J. devised this study. All authors except S.R. and A.G. contributed to manuscript writing. G.L., E.D., A.M., C.B., C.S. and D.W.G. characterized the probes. L.R., A.G. and S.R. performed synthesis of probes, supervised by K.J., H.W. and H.-D.A.; G.L., E.D., F.G. and H.T. performed STED microscopy, guided by S.W.H.; G.L. and M.F. performed SIM microscopy.

Corresponding authors

Correspondence to Hans-Dieter Arndt, Stefan W Hell or Kai Johnsson.

Ethics declarations

Competing interests

G.L. and K.J. have filed a patent application on SiR derivatives (PCT/EP2011/064750). S.R., H.-D.A. and H.W. have filed a patent application on the use of jasplakinolide derivatives (PCT/EP2012/073002).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Tables 1–3 and Supplementary Notes 1–3 (PDF 7301 kb)

Long-term live-cell microscopy of untreated control HeLa Kyoto cells stably expressing H2B-mRFP and MyrPalm-mEGFP.

The movie shows a region-of-interest of 1/16th of the full image frame and the full movie (0 – 23 h). (MOV 4300 kb)

Long-term live-cell microscopy of HeLa Kyoto cells stably expressing H2B-mRFP and MyrPalm-mEGFP, treated with 100 nM SiR-tubulin.

The movie shows a region-of-interest of 1/16th of the full image frame and the full movie (0 – 23 h), starting 0.5 h after addition of SiR-tubulin. (MOV 10798 kb)

Long-term live-cell microscopy of HeLa Kyoto cells stably expressing H2B-mRFP and MyrPalm-mEGFP, treated with 100 nM SiR-actin.

The movie shows a region-of-interest of 1/16th of the full image frame and the full movie (0 – 23 h), starting 0.5 h after addition of SiR-actin. (MOV 6974 kb)

Long-term live-cell microscopy of HeLa Kyoto cells stably expressing H2B-mRFP and MyrPalm-mEGFP, treated with 1 nM taxol.

The movie shows a region-of-interest of 1/16th of the full image frame and the full movie (0 – 23 h), starting 0.5 h after addition of taxol. (MOV 4344 kb)

Long-term live-cell microscopy of HeLa Kyoto cells stably expressing H2B-mRFP and MyrPalm-mEGFP, treated with 100 nM jasplakinolide.

The movie shows a region-of-interest of 1/16th of the full image frame and the full movie (0 – 23 h), starting 0.5 h after addition of jasplakinolide. (MOV 3735 kb)

2D SIM time series of microtubule dynamics in human primary dermal fibroblasts.

Cells were stained with 2 μM SiR-tubulin in complete DMEM medium for 60 min at 37°C and washed before imaging on a Nikon Eclipse Ti microscope. Time is indicated in min : s format. (AVI 10440 kb)

3D SIM time series of actin dynamics in lamellipodia of human primary dermal fibroblasts.

Cells were stained with 2 μM SiR-actin in complete DMEM medium for 120 min and imaged directly without washing on Nikon Eclipse Ti microscope. Time is indicated in min : s format. (AVI 12885 kb)

STED time series imaging of microtubule dynamics in human primary dermal fibroblasts.

Cells were stained with 2 μM SiR-tubulin in complete DMEM medium for 60 min at 37°C and washed before imaging on a STED microscope. Time is indicated in min : s format. (AVI 5124 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukinavičius, G., Reymond, L., D'Este, E. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11, 731–733 (2014). https://doi.org/10.1038/nmeth.2972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing