Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position

Abstract

We describe an assay for transposase-accessible chromatin using sequencing (ATAC-seq), based on direct in vitro transposition of sequencing adaptors into native chromatin, as a rapid and sensitive method for integrative epigenomic analysis. ATAC-seq captures open chromatin sites using a simple two-step protocol with 500–50,000 cells and reveals the interplay between genomic locations of open chromatin, DNA-binding proteins, individual nucleosomes and chromatin compaction at nucleotide resolution. We discovered classes of DNA-binding factors that strictly avoided, could tolerate or tended to overlap with nucleosomes. Using ATAC-seq maps of human CD4+ T cells from a proband obtained on consecutive days, we demonstrated the feasibility of analyzing an individual's epigenome on a timescale compatible with clinical decision-making.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATAC-seq probes open-chromatin state.
Figure 2: ATAC-seq provides genome-wide information on chromatin compaction.
Figure 3: ATAC-seq provides genome-wide information on nucleosome positioning in regulatory regions.
Figure 4: ATAC-seq assays genome-wide factor occupancy.
Figure 5: ATAC-seq enables real-time personal epigenomics.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Kornberg, R.D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Kornberg, R.D. & Lorch, Y. Chromatin structure and transcription. Annu. Rev. Cell Biol. 8, 563–587 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Mellor, J. The dynamics of chromatin remodeling at promoters. Mol. Cell 19, 147–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Boyle, A.P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schones, D.E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Valouev, A. et al. Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Gerstein, M.B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goryshin, I.Y. & Reznikoff, W.S. Tn5 in vitro transposition. J. Biol. Chem. 273, 7367–7374 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11, R119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gangadharan, S., Mularoni, L., Fain-Thornton, J., Wheelan, S.J. & Craig, N.L. DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo. Proc. Natl. Acad. Sci. USA 107, 21966–21972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, L. & Crawford, G.E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010 pdb.prot5384 (2010).

  14. Simon, J.M., Giresi, P.G., Davis, I.J. & Lieb, J.D. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat. Protoc. 7, 256–267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. The ENCODE Project Consortium. A user's guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

  16. Giresi, P.G. & Lieb, J.D. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods 48, 233–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoffman, M.M. et al. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 41, 827–841 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Prioleau, M.-N., Nony, P., Simpson, M. & Felsenfeld, G. An insulator element and condensed chromatin region separate the chicken β-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J. 18, 4035–4048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghirlando, R., Litt, M.D., Prioleau, M.-N., Recillas-Targa, F. & Felsenfeld, G. Physical properties of a genomic condensed chromatin fragment. J. Mol. Biol. 336, 597–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kornberg, R.D. & Lorch, Y. Chromatin and transcription: where do we go from here. Curr. Opin. Genet. Dev. 12, 249–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, J., Fan, J.Y., Rangasamy, D. & Tremethick, D.J. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat. Struct. Mol. Biol. 14, 1070–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, K. et al. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 23, 341–351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kundaje, A. et al. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Res. 22, 1735–1747 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hesselberth, J.R. et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods 6, 283–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boyle, A.P. et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res. 21, 456–464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pique-Regi, R. et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 21, 447–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fraser, J.D., Irving, B.A., Crabtree, G.R. & Weiss, A. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 251, 313–316 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Flanagan, W.M., Corthésy, B., Bram, R.J. & Crabtree, G.R. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352, 803–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Lopez-Girona, A. et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br. J. Haematol. 154, 325–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Verstovsek, S. et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N. Engl. J. Med. 363, 1117–1127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jolma, A. et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 20, 861–873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Guo, Y., Mahony, S. & Gifford, D.K. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput. Biol. 8, e1002638 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of Greenleaf and Chang labs for discussion, A. Burnet and S. Kim lab and the Stanford flow-cytometry core facility for assistance with FACS sorting, A. Schep for modeling Tn5 insertion preference, and V. Risca for graphics. This work was supported by the US National Institutes of Health (H.Y.C., W.J.G. and J.D.B.), including RC4NS073015, U01DK089532 and U19AI057229; Scleroderma Research Foundation (H.Y.C.); and California Institute for Regenerative Medicine (H.Y.C.). H.Y.C. acknowledges support as an Early Career Scientist of the Howard Hughes Medical Institute. GM12878 cells were a gift from the Snyder laboratory (Stanford University).

Author information

Authors and Affiliations

Authors

Contributions

J.D.B., P.G.G. and L.C.Z. performed the research. All authors designed experiments and interpreted the data. H.Y.C. and W.J.G. wrote the paper.

Corresponding authors

Correspondence to Howard Y Chang or William J Greenleaf.

Ethics declarations

Competing interests

Stanford University has filed a provisional patent application on the methods described, and J.D.B., P.G.G., H.Y.C. and W.J.G. are named as inventors.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1 and 2 (PDF 3902 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buenrostro, J., Giresi, P., Zaba, L. et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10, 1213–1218 (2013). https://doi.org/10.1038/nmeth.2688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2688

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research