Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes

Abstract

We demonstrate the versatility of a collection of insertions of the transposon Minos-mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 integrase attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase-mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to revert to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp recombinase system. Insertions in coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the D. melanogaster toolkit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MiMIC transposon system.
Figure 2: Binary expression and lineage analysis with MiMIC insertions.
Figure 3: Protein trapping with MiMIC insertions.
Figure 4: Expression analyses of tagged proteins.

Similar content being viewed by others

References

  1. Ryder, E. & Russell, S. Transposable elements as tools for genomics and genetics in Drosophila. Brief. Funct. Genomics Proteomics 2, 57–71 (2003).

    Article  CAS  Google Scholar 

  2. Venken, K.J. & Bellen, H.J. Emerging technologies for gene manipulation in Drosophila melanogaster. Nat. Rev. Genet. 6, 167–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Venken, K.J. & Bellen, H.J. Transgenesis upgrades for Drosophila melanogaster. Development 134, 3571–3584 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Bellen, H.J. et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bellen, H.J. et al. The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188, 731–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Witsell, A., Kane, D.P., Rubin, S. & McVey, M. Removal of the bloom syndrome DNA helicase extends the utility of imprecise transposon excision for making null mutations in Drosophila. Genetics 183, 1187–1193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franz, G. & Savakis, C. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res. 19, 6646 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Metaxakis, A., Oehler, S., Klinakis, A. & Savakis, C. Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics 171, 571–581 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pavlopoulos, A., Oehler, S., Kapetanaki, M.G. & Savakis, C. The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates. Genome Biol. 8 (suppl. 1), S2 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spradling, A.C. et al. The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).

    CAS  PubMed  Google Scholar 

  12. Bier, E. et al. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 3, 1273–1287 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Bellen, H.J. et al. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 3, 1288–1300 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Lukacsovich, T. et al. Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics 157, 727–742 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050–15055 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clyne, P.J., Brotman, J.S., Sweeney, S.T. & Davis, G. Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 165, 1433–1441 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Aleksic, J., Lazic, R., Muller, I., Russell, S.R. & Adryan, B. Biases in Drosophila melanogaster protein trap screens. BMC Genomics 10, 249 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Quinones-Coello, A.T. et al. Exploring strategies for protein trapping in Drosophila. Genetics 175, 1089–1104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buszczak, M. et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Branda, C.S. & Dymecki, S.M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Wirth, D. et al. Road to precision: recombinase-based targeting technologies for genome engineering. Curr. Opin. Biotechnol. 18, 411–419 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Golic, K.G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schlake, T. & Bode, J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33, 12746–12751 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Baer, A. & Bode, J. Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr. Opin. Biotechnol. 12, 473–480 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Horn, C. & Handler, A.M. Site-specific genomic targeting in Drosophila. Proc. Natl. Acad. Sci. USA 102, 12483–12488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bateman, J.R., Lee, A.M. & Wu, C.T. Site-specific transformation of Drosophila via φC31 integrase-nediated cassette exchange. Genetics 173, 769–777 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  30. Potter, C.J., Tasic, B., Russler, E.V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536–548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collins, C.A., Wairkar, Y.P., Johnson, S.L. & Diantonio, A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51, 57–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Dubruille, R. et al. Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 129, 5487–5498 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Shishido, E., Takeichi, M. & Nose, A. Drosophila synapse formation: regulation by transmembrane protein with Leu-rich repeats, CAPRICIOUS. Science 280, 2118–2121 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Martinek, N., Zou, R., Berg, M., Sodek, J. & Ringuette, M. Evolutionary conservation and association of SPARC with the basal lamina in Drosophila. Dev. Genes Evol. 212, 124–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Martinek, N., Shahab, J., Saathoff, M. & Ringuette, M. Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos. J. Cell Sci. 121, 1671–1680 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Ehrhardt, A., Engler, J.A., Xu, H., Cherry, A.M. & Kay, M.A. Molecular analysis of chromosomal rearrangements in mammalian cells after φC31-mediated integration. Hum. Gene Ther. 17, 1077–1094 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, J., Jeppesen, I., Nielsen, K. & Jensen, T.G. Phic31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther. 13, 1188–1190 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, J., Skjorringe, T., Gjetting, T. & Jensen, T.G. PhiC31 integrase induces a DNA damage response and chromosomal rearrangements in human adult fibroblasts. BMC Biotechnol. 9, 31 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Vandaele, C., Coulon-Bublex, M., Couble, P. & Durand, B. Drosophila regulatory factor X is an embryonic type I sensory neuron marker also expressed in spermatids and in the brain of Drosophila. Mech. Dev. 103, 159–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Bodily, K.D., Morrison, C.M., Renden, R.B. & Broadie, K. A novel member of the Ig superfamily, turtle, is a CNS-specific protein required for coordinated motor control. J. Neurosci. 21, 3113–3125 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brown, N.H. et al. Talin is essential for integrin function in Drosophila. Dev. Cell 3, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Yao, C.K. et al. A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138, 947–960 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Negre, N. et al. A cis-regulatory map of the Drosophila genome. Nature 471, 527–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gohl, D.M. et al. A versatile in vivo system for directed dissection of gene expression patterns. Nat. Methods 8, 231–237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wesolowska, N. & Rong, Y.S. The past, present and future of gene targeting in Drosophila. Fly (Austin) 4, 53–59 (2010).

    Article  CAS  Google Scholar 

  47. Venken, K.J., He, Y., Hoskins, R.A. & Bellen, H.J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Venken, K.J. et al. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat. Methods 6, 431–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klinakis, A.G., Loukeris, T.G., Pavlopoulos, A. & Savakis, C. Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. Insect Mol. Biol. 9, 269–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Groth, A.C., Olivares, E.C., Thyagarajan, B. & Calos, M.P. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97, 5995–6000 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hodges, D. & Bernstein, S.I. Suboptimal 5′ and 3′ splice sites regulate alternative splicing of Drosophila melanogaster myosin heavy chain transcripts in vitro. Mech. Dev. 37, 127–140 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Okada, A., Lansford, R., Weimann, J.M., Fraser, S.E. & McConnell, S.K. Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein. Exp. Neurol. 156, 394–406 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. & Pease, L.R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Pavlopoulos, A., Berghammer, A.J., Averof, M. & Klingler, M. Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167, 737–746 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Apitz, H. et al. Identification of regulatory modules mediating specific expression of the roughest gene in Drosophila melanogaster. Dev. Genes Evol. 214, 453–459 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Raymond, C.S. & Soriano, P. High-efficiency FLP and φC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Pedelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Ai, H.W., Shaner, N.C., Cheng, Z., Tsien, R.Y. & Campbell, R.E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46, 5904–5910 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith, A.T. et al. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J. Biol. Chem. 265, 13335–13343 (1990).

    CAS  PubMed  Google Scholar 

  62. Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42, 553–557 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Bulina, M.E. et al. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Martin, B.R., Giepmans, B.N., Adams, S.R. & Tsien, R.Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Schmidt, T.G., Koepke, J., Frank, R. & Skerra, A. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J. Mol. Biol. 255, 753–766 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Evan, G.I., Lewis, G.K., Ramsay, G. & Bishop, J.M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wilson, I.A. et al. The structure of an antigenic determinant in a protein. Cell 37, 767–778 (1984).

    Article  CAS  PubMed  Google Scholar 

  70. Dougherty, W.G., Cary, S.M. & Parks, T.D. Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology 171, 356–364 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Hackbarth, J.S. et al. S-peptide epitope tagging for protein purification, expression monitoring, and localization in mammalian cells. Biotechniques 37, 835–839 (2004).

    CAS  PubMed  Google Scholar 

  72. Southern, J.A., Young, D.F., Heaney, F., Baumgartner, W.K. & Randall, R.E. Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J. Gen. Virol. 72, 1551–1557 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Parks, A.L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet. 36, 288–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Ferguson, K., Long, H., Cameron, S., Chang, W.T. & Rao, Y. The conserved Ig superfamily member Turtle mediates axonal tiling in Drosophila. J. Neurosci. 29, 14151–14159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Al-Anzi, B. & Wyman, R.J. The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding. Neural Dev. 4, 31 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tear, G. et al. commissureless controls growth cone guidance across the CNS midline in Drosophila and encodes a novel membrane protein. Neuron 16, 501–514 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Nern, A. et al. An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. Proc. Natl. Acad. Sci. USA 102, 12944–12949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stapleton, M. et al. A Drosophila full-length cDNA resource. Genome Biol. 3, 0080 (2002).

    Article  Google Scholar 

  79. Lecuyer, E., Parthasarathy, N. & Krause, H.M. Fluorescent in situ hybridization protocols in Drosophila embryos and tissues. Methods Mol. Biol. 420, 289–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Lehmann, R. & Tautz, D. In situ hybridization to RNA. Methods Cell Biol. 44, 575–598 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Al-Anzi (California Institute of Technology), K. Basler, J. Bischof (University of Zurich), J. Bateman (Bowdoin College), K. Broadie (Vanderbilt University), M. Calos, L. Luo, A. Okada (Stanford University), W. Chia (National University of Singapore), A. DiAntonio (Washington University), B. Durand, A. Laurençon (University of Lyon), F. Karch (University of Geneva), X. Morin (Institute of Developmental Biology of Marseille), A. Nose (University of Tokyo), S. Oehler (University of Crete), A. Pavlopoulos (University of Cambridge), C. Potter (Johns Hopkins University), Y. Rao (McGill University), M. Ringuette, J. Shahab (University of Toronto), C. Savakis (Biomedical Sciences Research Center Alexander Fleming), T. Suzuki (Max Planck Institute of Neurobiology), C. Tan (University of Missouri), G. Tear (King's College London), R. Tsien (University of California San Diego), T. Wu (Harvard University), L. Zipursky (University of California Los Angeles), members of the BDSC and the Drosophila Genomics Resource Center (Indiana University), Addgene and members of the Developmental Studies Hybridoma Bank for flies, plasmids, antibodies and communications; S. Park and K. Wan for assistance in mapping MiMIC insertions; D. Bei, Y. Fang, J. Li, Z. Wang, X. Zheng and J. Yue for generating fly stocks; and T. Suzuki for communication of unpublished results. This work was funded by US National Institutes of Health grants 2R01 GM067858 to A.C.S., R.A.H. and H.J.B., and T32 GM07526-33 to K.J.T.V.; A.C.S. and H.J.B. are funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

K.J.T.V. designed the MiMIC technique and vectors, and performed all molecular biology, except for mapping of insertions. R.W.L., A.C.S., R.A.H. and H.J.B. conceived the application of MiMIC to the GDP. H.P. and Y.H. performed microinjections. K.J.T.V., H.P. and Y.H. performed fly genetics. M.E.-H. and R.A.H. mapped insertions. K.J.T.V., Y.H., M.E.-H., J.W.C., R.W.L. and R.A.H. analyzed insertion data, annotated insertions and prepared public database submissions. J.W.C. performed bioinformatic analysis. K.J.T.V., N.A.H. and H.P. verified RMCE events by PCR. K.J.T.V. and K.L.S. did staining of gene-trap events. K.L.S. and N.A.H. did staining of protein trap events. K.J.T.V., K.L.S., N.A.H. and H.J.B. analyzed expression patterns. K.J.T.V. and H.J.B. wrote the paper. R.A.H. and R.W.L. edited the paper.

Corresponding authors

Correspondence to Koen J T Venken or Hugo J Bellen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–6 and Supplementary Data (PDF 587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venken, K., Schulze, K., Haelterman, N. et al. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8, 737–743 (2011). https://doi.org/10.1038/nmeth.1662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing