Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

A roadmap to generate renewable protein binders to the human proteome

Abstract

Despite the wealth of commercially available antibodies to human proteins, research is often hindered by their inconsistent validation, their poor performance and the inadequate coverage of the proteome. These issues could be addressed by systematic, genome-wide efforts to generate and validate renewable protein binders. We report a multicenter study to assess the potential of hybridoma and phage-display technologies in a coordinated large-scale antibody generation and validation effort. We produced over 1,000 antibodies targeting 20 SH2 domain proteins and evaluated them for potency and specificity by enzyme-linked immunosorbent assay (ELISA), protein microarray and surface plasmon resonance (SPR). We also tested selected antibodies in immunoprecipitation, immunoblotting and immunofluorescence assays. Our results show that high-affinity, high-specificity renewable antibodies generated by different technologies can be produced quickly and efficiently. We believe that this work serves as a foundation and template for future larger-scale studies to create renewable protein binders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart showing methodologies used to systematically produce and validate renewable antibodies.
Figure 2: Antibody validation by immunoprecipitation.
Figure 3: Anti-Lyn Fab (LYN_SS_Fab_2) recognizes ectopic Lyn expressed in HEK 293T cells.
Figure 4: An scFv recognizes Shc1 in MDCK cells.

Similar content being viewed by others

References

  1. Taussig, M.J. et al. ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat. Methods 4, 13–17 (2007).

    Article  CAS  Google Scholar 

  2. Bordeaux, J. et al. Antibody validation. Biotechniques 48, 197–209 (2010).

    Article  CAS  Google Scholar 

  3. Uhlén, M. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteomics 4, 1920–1932 (2005).

    Article  Google Scholar 

  4. Berglund, L. et al. A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol. Cell. Proteomics 7, 2019–2027 (2008).

    Article  CAS  Google Scholar 

  5. Nilsson, P. et al. Towards a human proteome atlas: high-throughput generation of mono-specific antibodies for tissue profiling. Proteomics 5, 4327–4337 (2005).

    Article  CAS  Google Scholar 

  6. Ohara, R. et al. Antibodies for proteomic research: comparison of traditional immunization with recombinant antibody technology. Proteomics 6, 2638–2646 (2006).

    Article  CAS  Google Scholar 

  7. Schofield, D.J. et al. Application of phage display to high throughput antibody generation and characterization. Genome Biol. 8, R254 (2007).

    Article  Google Scholar 

  8. De Masi, F. et al. High throughput production of mouse monoclonal antibodies using antigen microarrays. Proteomics 5, 4070–4081 (2005).

    Article  CAS  Google Scholar 

  9. Hust, M. & Dübel, S. Mating antibody phage display with proteomics. Trends Biotechnol. 22, 8–14 (2004).

    Article  CAS  Google Scholar 

  10. Konthur, Z., Hust, M. & Dübel, S. Perspectives for systematic in vitro antibody generation. Gene 364, 19–29 (2005).

    Article  CAS  Google Scholar 

  11. Dübel, S., Stoevesand, O., Taussig, M.J. & Hust, M. Generating recombinant antibodies to the complete human proteome. Trends Biotechnol. 28, 333–339 (2010).

    Article  Google Scholar 

  12. Blow, N. Antibodies: the generation game. Nature 447, 741–744 (2007).

    Article  CAS  Google Scholar 

  13. Uhlén, M., Gräslund, S. & Sundstrom, M. A pilot project to generate affinity reagents to human proteins. Nat. Methods 5, 854–855 (2008).

    Article  Google Scholar 

  14. Scott, J.D. & Pawson, T. Cell signaling in space and time: where proteins come together and when they′re apart. Science 326, 1220–1224 (2009).

    Article  CAS  Google Scholar 

  15. Seet, B.T., Dikic, I., Zhou, M.M. & Pawson, T. Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7, 473–483 (2006).

    Article  CAS  Google Scholar 

  16. Mersmann, M. et al. Towards proteome scale antibody selections using phage display. New Biotechnol. 27, 118–128 (2010).

    Article  CAS  Google Scholar 

  17. Pershad, K. et al. Generating a panel of highly specific antibodies to 20 human SH2 domains by phage display. Protein Eng. Des. Sel. 23, 279–288 (2010).

    Article  CAS  Google Scholar 

  18. Hust, M. et al. A human scFv antibody generation pipeline for proteome research. J. Biotechnol. 152, 159–170 (2010).

    Article  Google Scholar 

  19. Nice, E.C. & Catimel, B. Instrumental biosensors: new perspectives for the analysis of biomolecular interactions. Bioessays 21, 339–352 (1999).

    Article  CAS  Google Scholar 

  20. Thie, H., Binius, S., Schirrmann, T., Hust, M. & Dübel, S. Multimerization domains for antibody phage display and antibody production. New Biotechnol. 26, 314–321 (2009).

    Article  CAS  Google Scholar 

  21. Martin, C.D. et al. A simple vector system to improve performance and utilisation of recombinant antibodies. BMC Biotechnol. 6, 46 (2006).

    Article  Google Scholar 

  22. Dufner, P., Jermutus, L. & Minter, R.R. Harnessing phage and ribosome display for antibody optimisation. Trends Biotechnol. 24, 523–529 (2006).

    Article  CAS  Google Scholar 

  23. Moutel, S. et al. A multi-Fc-species system for recombinant antibody production. BMC Biotechnol. 9, 14 (2009).

    Article  Google Scholar 

  24. Schütte, M. et al. Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS ONE 4, e6625 (2009).

    Article  Google Scholar 

  25. Luzi, L., Confalonieri, S., Di Fiore, P.P. & Pelicci, P.G. Evolution of Shc functions from nematode to human. Curr. Opin. Genet. Dev. 10, 668–674 (2000).

    Article  CAS  Google Scholar 

  26. Sorkin, A. Internalization of the epidermal growth factor receptor: role in signalling. Biochem. Soc. Trans. 29, 480–484 (2001).

    Article  CAS  Google Scholar 

  27. Hollinshead, M., Sanderson, J. & Vaux, D.J. Anti-biotin antibodies offer superior organelle-specific labeling of mitochondria over avidin or streptavidin. J. Histochem. Cytochem. 45, 1053–1057 (1997).

    Article  CAS  Google Scholar 

  28. Bradbury, A.R., Sidhu, S., Dübel, S. & McCafferty, J. Beyond natural antibodies: the power of in vitro display technologies. Nat. Biotechnol. 29, 245–254 (2011).

    Article  CAS  Google Scholar 

  29. Li, B. et al. Activation of the proapoptotic death receptor DR5 by oligomeric peptide and antibody agonists. J. Mol. Biol. 361, 522–536 (2006).

    Article  CAS  Google Scholar 

  30. Thie, H. et al. Rise and fall of an anti-MUC1 specific antibody. PLoS ONE 6, e15921 (2011).

    Article  CAS  Google Scholar 

  31. Liu, B.A. et al. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22, 851–868 (2006).

    Article  Google Scholar 

  32. Linding, R., Russell, R.B., Neduva, V. & Gibson, T.J. GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res. 31, 3701–3708 (2003).

    Article  CAS  Google Scholar 

  33. Colwill, K. et al. Modification of the Creator recombination system for proteomics applications–improved expression by addition of splice sites. BMC Biotechnol. 6, 13 (2006).

    Article  Google Scholar 

  34. Sundqvist, G., Stenvall, M., Berglund, H., Ottosson, J. & Brumer, H. A general, robust method for the quality control of intact proteins using LC-ESI-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852, 188–194 (2007).

    Article  CAS  Google Scholar 

  35. Fellouse, F.A. et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J. Mol. Biol. 373, 924–940 (2007).

    Article  CAS  Google Scholar 

  36. Sidhu, S.S. et al. Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J. Mol. Biol. 338, 299–310 (2004).

    Article  CAS  Google Scholar 

  37. Hust, M. et al. Improved microtitre plate production of single chain Fv fragments in Escherichia coli. New Biotechnol. 25, 424–428 (2009).

    Article  CAS  Google Scholar 

  38. Deshayes, K. et al. Rapid identification of small binding motifs with high-throughput phage display: discovery of peptidic antagonists of IGF-1 function. Chem. Biol. 9, 495–505 (2002).

    Article  CAS  Google Scholar 

  39. Evan, G.I., Lewis, G.K., Ramsay, G. & Bishop, J.M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge B. Liu and P. Nash for providing SH2 domain alignments; N. Bisson (Samuel Lunenfeld Research Institute) for providing a stable cell line encoding Flag-tagged Grb2; M. Taussig and M. Sundstrom for helpful discussions; and N. Bisson and B. Liu for critically reading the manuscript. The Structural Genomics Consortium is a registered charity (number 1097737) that receives funds from the Canadian Institutes for Health Research, the Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundation, the Ontario Innovation Trust, the Ontario Ministry for Research and Innovation, Merck & Co., Inc., the Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish Foundation for Strategic Research and the Wellcome Trust. This work was also supported by funds from Genome Canada through the Ontario Genomics Institute and Ontario Research Fund Global Leadership Round in Genomics and Life Sciences (to T.P.), The Human Frontier Science Program (O.R.), the European Commission 6th framework program coordination action 'Proteome Binders' (S.D.), from the Systematisch-Methodischen Platform Antibody Factory, within the German Nationales Genomforschungsnetz (S.D.), the Land Niedersachsen (S.D.), the Wellcome Trust (J.Mc.), the US National Institutes of Health (GM082288-09A1 and EY016094-01A1 to B.K.K. and R01-GM72688 and U54-GM74946 to A.A.K. and S.K.), to the Swedish Research Council (524-2008-617) (H.P.), and the Victorian State Government (The Department of Innovation, Industry and Regional Development), the Australian Federal Government (Bioplatforms Australia) and Monash University for financial support for the Monash Antibody Technologies Facility.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

K.P., J.D.P., A.K.-V., D.J.S., N.E.J., A.W., J.Wo., A.K., M.M., D.M., J.M., S.H., S.B., A.F., M.S., K.W., A.D., K.H., M.S., R.S., J.M.S., A.S., J.O., S.H., L.-G.D., A.F., I.J., L.C., P.L., I.K., D.L. and F.A.F. designed and performed experiments; M.R.D., M.H., H.P., O.R., P.N., E.N. and D.C. conceived, designed and performed experiments and wrote the paper; J.We., C.H.A., B.K.K., A.A.K. and M.U. oversaw the project; J.Mc., S.K., S.S., S.D., A.S., T.P. and A.M.E. conceived and oversaw the project and wrote the paper; K.C. and S.G. conceived, designed and performed experiments, oversaw the project and wrote the paper.

Corresponding authors

Correspondence to Karen Colwill or Susanne Gräslund.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of authors appears at the end of this paper.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 2 (PDF 997 kb)

Supplementary Table 1

Summary of the results at each step in this study. (XLS 70 kb)

Supplementary Table 3

Construction and sequence of SH2 domains. (XLS 159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colwill, K., Renewable Protein Binder Working Group. & Gräslund, S. A roadmap to generate renewable protein binders to the human proteome. Nat Methods 8, 551–558 (2011). https://doi.org/10.1038/nmeth.1607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1607

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research