Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CSF-1R inhibition alters macrophage polarization and blocks glioma progression

Subjects

Abstract

Glioblastoma multiforme (GBM) comprises several molecular subtypes, including proneural GBM. Most therapeutic approaches targeting glioma cells have failed. An alternative strategy is to target cells in the glioma microenvironment, such as tumor-associated macrophages and microglia (TAMs). Macrophages depend on colony stimulating factor-1 (CSF-1) for differentiation and survival. We used an inhibitor of the CSF-1 receptor (CSF-1R) to target TAMs in a mouse proneural GBM model, which significantly increased survival and regressed established tumors. CSF-1R blockade additionally slowed intracranial growth of patient-derived glioma xenografts. Surprisingly, TAMs were not depleted in treated mice. Instead, glioma-secreted factors, including granulocyte-macrophage CSF (GM-CSF) and interferon-γ (IFN-γ), facilitated TAM survival in the context of CSF-1R inhibition. Expression of alternatively activated M2 markers decreased in surviving TAMs, which is consistent with impaired tumor-promoting functions. These gene signatures were associated with enhanced survival in patients with proneural GBM. Our results identify TAMs as a promising therapeutic target for proneural gliomas and establish the translational potential of CSF-1R inhibition for GBM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CSF-1R inhibition specifically targets macrophages, improves survival and decreases glioma malignancy in the transgenic PDG model.
Figure 2: CSF-1R inhibition blocks tumor growth and effectively regresses established gliomas.
Figure 3: Short-term BLZ945 treatment results in reduced tumor grade and proliferation and increased apoptosis.
Figure 4: BLZ945 inhibits orthotopic tumor growth of patient-derived proneural tumor spheres and cell lines in vivo.
Figure 5: CSF-1R inhibition depletes normal microglia but not TAMs in treated PDGs as a result of the production of glioma-supplied survival factors.
Figure 6: CSF-1R inhibition impairs heterotypic signaling between macrophages and glioma cells and is predictive of improved survival in patients with proneural GBM.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Wen, P.Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Dunn, G.P. et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 26, 756–784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verhaak, R.G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balkwill, F.R. & Mantovani, A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin. Cancer Biol. 22, 33–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Joyce, J.A. & Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Bingle, L., Brown, N.J. & Lewis, C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Hussain, S.F. et al. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-oncol. 8, 261–279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Komohara, Y., Ohnishi, K., Kuratsu, J. & Takeya, M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216, 15–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Coniglio, S.J. et al. Microglial stimulation of glioblastoma invasion involves EGFR and CSF-1R signaling. Mol. Med. 18, 519–527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruffell, B., Affara, N.I. & Coussens, L.M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manthey, C.L. et al. JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol. Cancer Ther. 8, 3151–3161 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Patel, S. & Player, M.R. Colony-stimulating factor-1 receptor inhibitors for the treatment of cancer and inflammatory disease. Curr. Top. Med. Chem. 9, 599–610 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Fomchenko, E.I. et al. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS ONE 6, e20605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hambardzumyan, D., Amankulor, N.M., Helmy, K.Y., Becher, O.J. & Holland, E.C. Modeling adult gliomas using RCAS/t-va technology. Transl. Oncol. 2, 89–95 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huse, J.T. & Holland, E.C. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol. 19, 132–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Kennedy, B.C. et al. Dynamics of central and peripheral immunomodulation in a murine glioma model. BMC Immunol. 10, 11 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hambardzumyan, D., Parada, L.F., Holland, E.C. & Charest, A. Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia 59, 1155–1168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, T. et al. Investigation of correlation among safety biomarkers in serum, histopathological examination, and toxicogenomics. Int. J. Toxicol. 30, 300–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Kilic, T. et al. Intracranial inhibition of platelet-derived growth factor–mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res. 60, 5143–5150 (2000).

    CAS  PubMed  Google Scholar 

  23. Takeuchi, H., Kanzawa, T., Kondo, Y. & Kondo, S. Inhibition of platelet-derived growth factor signalling induces autophagy in malignant glioma cells. Br. J. Cancer 90, 1069–1075 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shih, A.H. et al. Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res. 64, 4783–4789 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Chitu, V. & Stanley, E.R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 18, 39–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Luo, J. et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J. Exp. Med. 210, 157–172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Erblich, B., Zhu, L., Etgen, A.M., Dobrenis, K. & Pollard, J.W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6, e26317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Bradley, E.W., Ruan, M.M. & Oursler, M.J. Novel pro-survival functions of the Kruppel-like transcription factor Egr2 in promotion of macrophage colony-stimulating factor–mediated osteoclast survival downstream of the MEK/ERK pathway. J. Biol. Chem. 283, 8055–8064 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Croucher, D.R., Saunders, D.N., Lobov, S. & Ranson, M. Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat. Rev. Cancer 8, 535–545 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Biswas, S.K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Töröcsik, D. et al. Factor XIII-A is involved in the regulation of gene expression in alternatively activated human macrophages. Thromb. Haemost. 104, 709–717 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Probst-Cousin, S., Rickert, C.H. & Gullotta, F. Factor XIIIa-immunoreactivity in tumors of the central nervous system. Clin. Neuropathol. 17, 79–84 (1998).

    CAS  PubMed  Google Scholar 

  35. Chen, P. et al. Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin. Cancer Res. 17, 7230–7239 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Schroder, W.A., Major, L. & Suhrbier, A. The role of SerpinB2 in immunity. Crit. Rev. Immunol. 31, 15–30 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Solinas, G. et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J. Immunol. 185, 642–652 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Fleetwood, A.J., Lawrence, T., Hamilton, J.A. & Cook, A.D. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 178, 5245–5252 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Sierra-Filardi, E. et al. Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 117, 5092–5101 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, A. et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncol. 12, 1113–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Squatrito, M. et al. Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18, 619–629 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  44. Freije, W.A. et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res. 64, 6503–6510 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Phillips, H.S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Murat, A. et al. Stem cell–related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol. 26, 3015–3024 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeNardo, D.G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery 1, 54–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25, 2465–2479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dai, C. et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 15, 1913–1925 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tchougounova, E. et al. Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma. Oncogene 26, 6289–6296 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Hohl, T.M. et al. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6, 470–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cailhier, J.F. et al. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J. Immunol. 174, 2336–2342 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Duffield, J.S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Pontén, J. & Macintyre, E.H. Long term culture of normal and neoplastic human glia. Acta Pathol. Microbiol. Scand. 74, 465–486 (1968).

    Article  PubMed  Google Scholar 

  59. Walker, W.S. Establishment of mononuclear phagocyte cell lines. J. Immunol. Methods 174, 25–31 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Bocchini, V. et al. An immortalized cell line expresses properties of activated microglial cells. J. Neurosci. Res. 31, 616–621 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Szerlip, N.J. et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc. Natl. Acad. Sci. USA 109, 3041–3046 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ponomarev, V. et al. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur. J. Nucl. Med. Mol. Imaging 31, 740–751 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Jensen, J.B. & Parmar, M. Strengths and limitations of the neurosphere culture system. Mol. Neurobiol. 34, 153–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Florey, O., Kim, S.E., Sandoval, C.P., Haynes, C.M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol. 13, 1335–1343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hirai, H. et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol. Cancer Ther. 9, 1956–1967 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Irizarry, R.A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gautier, L., Cope, L., Bolstad, B.M. & Irizarry, R.A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  PubMed  Google Scholar 

  69. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Therneau, T. A package for survival analysis in S. (R package version 2.36–12, 2012).

  71. Warnes, G.R. et al. gplots: various R programming tools for plotting data (R package version 2.10.1, 2011).

  72. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

Download references

Acknowledgements

We thank K. Simpson and X. Chen for excellent technical support, members of the Joyce and Holland labs, particularly T. Ozawa, K. Pitter and M. Squatrito, for technical advice and reagents and D. Chakravarti and the MSKCC Brain Tumor Center for assistance with patient and tumor sphere line information. We thank R. Benezra, K. Hunter and H.-W. Wang for reading the manuscript. We thank E. Pamer and T. Hohl (MSKCC) for providing CCR2-DTR mice and R. Lang (Cincinnati Children's Hospital Medical Center) for providing CD11b-DTR mice. We are grateful to the MSKCC Core Facilities of Genomics, Flow Cytometry and Small Animal Imaging, Geoffrey Beene Translational Oncology and the Novartis Institutes for BioMedical Research Emeryville Analytical Sciences group for technical assistance. This research was supported by US National Cancer Institute program grants of the Integrative Cancer Biology Program (CA148967; J.A.J. and C.S.L.) and Tumor Microenvironment Network (CA126518; J.A.J. and E.C.H.), Cycle for Survival (J.A.J.), the Geoffrey Beene Foundation (J.A.J., R.L.B. and O.C.O.), the MSKCC Brain Tumor Center (J.A.J. and L.A.), the Fundación Ramón Areces and Ibercaja (A.J.S.), Deutsche Forschungsgemeinschaft (L.S.), Canadian Institutes of Health Research (D.F.Q.), US National Institutes of Health T32 Institutional Research training grant (5T32GM008539, S.M.P.), US National Cancer Institute F31 fellowships (F31CA167863, R.L.B.; F31CA171384, O.C.O.) and Cornell and Gerstner Sloan Kettering graduate programs (S.M.P., R.L.B., O.C.O. and V.T.).

Author information

Authors and Affiliations

Authors

Contributions

S.M.P., L.A., A.J.S., L.S., D.F.Q. and O.C.O. performed and analyzed experiments. R.L.B., M.S. and C.S.L. performed computational analyses. M.L.Q., V.T., Y.O., A.P. and J.Z. provided technical assistance or derived patient tumor sphere lines. J.T.H. performed histopathological analyses. C.W.B., J.C.S., E.C.H. and D.D. provided reagents. J.A.J. conceived, designed and supervised the study and wrote the manuscript. All authors edited or commented on the manuscript.

Corresponding author

Correspondence to Johanna A Joyce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–24, Supplementary Tables 1–11 and Supplementary Methods (PDF 7585 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyonteck, S., Akkari, L., Schuhmacher, A. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19, 1264–1272 (2013). https://doi.org/10.1038/nm.3337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3337

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer