Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interleukin 33 is a guardian of barriers and a local alarmin

Abstract

Interleukin 33 (IL-33) is a member of the IL-1 family of cytokines with a growing number of target cells and a plethora of biological functions. Although it has commonalities with other IL-1 cytokines, IL-33 exhibits some unique features. Here we review the biology of IL-33 and its receptor and develop a working model that describes two 'lives' for IL-33—one intracellular and one extracellular. Under healthy conditions, constitutively produced, intracellular IL-33 participates in maintaining barrier function by regulating gene expression as a nuclear protein. In parallel, nuclear IL-33 functions as a stored alarmin that is released when barriers are breached. Extracellular IL-33 coordinates immune defense and repair mechanisms while also initiating differentiation of helper T cells as the adaptive immune response is triggered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Production, release and processing of IL-33.
Figure 2: Formation and fate of IL-33R complexes.
Figure 3: Working model of IL-33 as a guardian of barriers and conductor of local inflammation.

Marina Corral Spence/Nature Publishing Group

Similar content being viewed by others

References

  1. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Garlanda, C., Dinarello, C.A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Priestle, J.P., Schär, H.P. & Grütter, M.G. Crystal structure of the cytokine interleukin-1β. EMBO J. 7, 339–343 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lingel, A. et al. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors—insight into heterotrimeric IL-1 signaling complexes. Structure 17, 1398–1410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Afonina, I.S., Müller, C., Martin, S.J. & Beyaert, R. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity 42, 991–1004 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Boraschi, D. & Tagliabue, A. The interleukin-1 receptor family. Semin. Immunol. 25, 394–407 (2013).

    CAS  PubMed  Google Scholar 

  7. Xu, D. et al. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J. Exp. Med. 187, 787–794 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moritz, D.R., Rodewald, H.R., Gheyselinck, J. & Klemenz, R. The IL-1 receptor-related T1 antigen is expressed on immature and mature mast cells and on fetal blood mast cell progenitors. J. Immunol. 161, 4866–4874 (1998).

    CAS  PubMed  Google Scholar 

  9. Hoshino, K. et al. The absence of interleukin 1 receptor–related T1/ST2 does not affect T helper cell type 2 development and its effector function. J. Exp. Med. 190, 1541–1548 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Townsend, M.J., Fallon, P.G., Matthews, D.J., Jolin, H.E. & McKenzie, A.N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J. Exp. Med. 191, 1069–1076 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Senn, K.A. et al. T1-deficient and T1-Fc-transgenic mice develop a normal protective TH2-type immune response following infection with Nippostrongylus brasiliensis. Eur. J. Immunol. 30, 1929–1938 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Coyle, A.J. et al. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2–mediated lung mucosal immune responses. J. Exp. Med. 190, 895–902 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liew, F.Y., Pitman, N.I. & McInnes, I.B. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10, 103–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Saluja, R. et al. The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders. Mol. Immunol. 63, 80–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Lopetuso, L.R., Chowdhry, S. & Pizarro, T.T. Opposing functions of classic and novel IL-1 family members in gut health and disease. Front. Immunol. 4, 181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Palmer, G. & Gabay, C. Interleukin-33 biology with potential insights into human diseases. Nat. Rev. Rheumatol. 7, 321–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Gadani, S.P., Walsh, J.T., Smirnov, I., Zheng, J. & Kipnis, J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85, 703–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Miller, A.M. & Liew, F.Y. The IL-33/ST2 pathway—a new therapeutic target in cardiovascular disease. Pharmacol. Ther. 131, 179–186 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Liew, F.Y. IL-33: a Janus cytokine. Ann. Rheum. Dis. 71 (suppl. 2), i101–i104 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Palomo, J., Dietrich, D., Martin, P., Palmer, G. & Gabay, C. The interleukin (IL)-1 cytokine family—balance between agonists and antagonists in inflammatory diseases. Cytokine 76, 25–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Onda, H. et al. Identification of genes differentially expressed in canine vasospastic cerebral arteries after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 19, 1279–1288 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Baekkevold, E.S. et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am. J. Pathol. 163, 69–79 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Küchler, A.M. et al. Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation. Am. J. Pathol. 173, 1229–1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moussion, C., Ortega, N. & Girard, J.-P.P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS ONE 3, e3331 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sundlisaeter, E. et al. The alarmin IL-33 is a notch target in quiescent endothelial cells. Am. J. Pathol. 181, 1099–1111 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Talabot-Ayer, D. et al. Severe neutrophil-dominated inflammation and enhanced myelopoiesis in IL-33-overexpressing CMV/IL33 mice. J. Immunol. 194, 750–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Zhiguang, X. et al. Over-expression of IL-33 leads to spontaneous pulmonary inflammation in mIL-33 transgenic mice. Immunol. Lett. 131, 159–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Pichery, M. et al. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33–LacZ gene trap reporter strain. J. Immunol. 188, 3488–3495 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Sundnes, O. et al. Epidermal expression and regulation of interleukin-33 during homeostasis and inflammation: strong species differences. J. Invest. Dermatol. 135, 1771–1780 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Préfontaine, D. et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J. Allergy Clin. Immunol. 125, 752–754 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Louten, J. et al. Endogenous IL-33 enhances TH2 cytokine production and T-cell responses during allergic airway inflammation. Int. Immunol. 23, 307–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Carriere, V. et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl. Acad. Sci. USA 104, 282–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Roussel, L., Erard, M., Cayrol, C. & Girard, J.-P.P. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket. EMBO Rep. 9, 1006–1012 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kakkar, R., Hei, H., Dobner, S. & Lee, R.T. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J. Biol. Chem. 287, 6941–6948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bessa, J. et al. Altered subcellular localization of IL-33 leads to nonresolving lethal inflammation. J. Autoimmun. 55, 33–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Kalashnikova, A.A., Porter-Goff, M.E., Muthurajan, U.M., Luger, K. & Hansen, J.C. The role of the nucleosome acidic patch in modulating higher-order chromatin structure. J. R. Soc. Interface 10, 20121022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shao, D. et al. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension. Biochem. Biophys. Res. Commun. 451, 8–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Ali, S. et al. The dual function cytokine IL-33 interacts with the transcription factor NF-kB to dampen NF-kB–stimulated gene transcription. J. Immunol. 187, 1609–1616 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Choi, Y.-S.S. et al. Nuclear IL-33 is a transcriptional regulator of NF-kB p65 and induces endothelial cell activation. Biochem. Biophys. Res. Commun. 421, 305–311 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Shan, J. et al. Epithelial-derived nuclear IL-33 aggravates inflammation in the pathogenesis of reflux esophagitis. J. Gastroenterol. 50, 414–423 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, F. et al. Expression of IL-33 and its epigenetic regulation in multiple sclerosis. Ann. Clin. Transl. Neurol. 1, 307–318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tao, L. et al. Deubiquitination and stabilization of IL-33 by USP21. Int. J. Clin. Exp. Pathol. 7, 4930–4937 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rider, P., Carmi, Y., Voronov, E. & Apte, R.N. Interleukin-1α. Semin. Immunol. 25, 430–438 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Polumuri, S.K. et al. Transcriptional regulation of murine IL-33 by TLR and non-TLR agonists. J. Immunol. 189, 50–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Talabot-Ayer, D. et al. The mouse interleukin (Il)33 gene is expressed in a cell type- and stimulus-dependent manner from two alternative promoters. J. Leukoc. Biol. 91, 119–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Tsuda, H. et al. Novel splice variants of IL-33: differential expression in normal and transformed cells. J. Invest. Dermatol. 132, 2661–2664 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Hong, J. et al. Identification of constitutively active interleukin 33 (IL-33) splice variant. J. Biol. Chem. 286, 20078–20086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meephansan, J., Tsuda, H., Komine, M., Tominaga, S. & Ohtsuki, M. Regulation of IL-33 expression by IFN-γ and tumor necrosis factor-α in normal human epidermal keratinocytes. J. Invest. Dermatol. 132, 2593–2600 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Meephansan, J. et al. Expression of IL-33 in the epidermis: the mechanism of induction by IL-17. J. Dermatol. Sci. 71, 107–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Seltmann, J., Werfel, T. & Wittmann, M. Evidence for a regulatory loop between IFN-γ and IL-33 in skin inflammation. Exp. Dermatol. 22, 102–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Kopach, P. et al. IFN-γ directly controls IL-33 protein level through a STAT1- and LMP2-dependent mechanism. J. Biol. Chem. 289, 11829–11843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haraldsen, G., Balogh, J., Pollheimer, J., Sponheim, J. & Küchler, A.M. Interleukin-33—cytokine of dual function or novel alarmin? Trends Immunol. 30, 227–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Cayrol, C. & Girard, J.-P.P. The IL-1–like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl. Acad. Sci. USA 106, 9021–9026 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lüthi, A.U. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Ali, S., Nguyen, D.Q., Falk, W. & Martin, M.U. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation. Biochem. Biophys. Res. Commun. 391, 1512–1516 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Talabot-Ayer, D., Lamacchia, C., Gabay, C. & Palmer, G. Interleukin-33 is biologically active independently of caspase-1 cleavage. J. Biol. Chem. 284, 19420–19426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Madouri, F. et al. Caspase-1 activation by NLRP3 inflammasome dampens IL-33–dependent house dust mite–induced allergic lung inflammation. J. Mol. Cell Biol. 7, 351–365 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Rickard, J.A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Sanada, S. et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117, 1538–1549 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, W.-Y.Y., Hong, J., Gannon, J., Kakkar, R. & Lee, R.T. Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33. Proc. Natl. Acad. Sci. USA 112, 7249–7254 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao, W. & Hu, Z. The enigmatic processing and secretion of interleukin-33. Cell. Mol. Immunol. 7, 260–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lefrançais, E. & Cayrol, C. Mechanisms of IL-33 processing and secretion: differences and similarities between IL-1 family members. Eur. Cytokine Netw. 23, 120–127 (2012).

    PubMed  Google Scholar 

  63. Lefrançais, E. et al. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc. Natl. Acad. Sci. USA 111, 15502–15507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lefrançais, E. et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc. Natl. Acad. Sci. USA 109, 1673–1678 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Roy, A. et al. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation. J. Biol. Chem. 289, 237–250 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Cohen, E.S. et al. Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nat. Commun. 6, 8327 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, W.-H.H. & Hu, Z.-Q.Q. Upregulation of IL-33 expression in various types of murine cells by IL-3 and IL-4. Cytokine 58, 267–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Su, Z. et al. Potential autocrine regulation of interleukin-33/ST2 signaling of dendritic cells in allergic inflammation. Mucosal Immunol. 6, 921–930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, C. et al. Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin. PLoS Pathog. 10, e1003918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Demyanets, S. et al. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J. Mol. Cell. Cardiol. 60, 16–26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu, X. & Ivashkiv, L.B. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sugita, S. et al. Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2. Proc. Natl. Acad. Sci. USA 112, 3080–3085 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liang, Y. et al. IL-33 promotes innate IFN-γ production and modulates dendritic cell response in LCMV-induced hepatitis in mice. Eur. J. Immunol. (2015).

  74. Zhang, H.-F.F. et al. Altered serum levels of IL-33 in patients with advanced systolic chronic heart failure: correlation with oxidative stress. J. Transl. Med. 10, 120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ali, S. et al. IL-1 receptor accessory protein is essential for IL-33–induced activation of T lymphocytes and mast cells. Proc. Natl. Acad. Sci. USA 104, 18660–18665 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chackerian, A.A. et al. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J. Immunol. 179, 2551–2555 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Palmer, G. et al. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine 42, 358–364 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, X. et al. Structural insights into the interaction of IL-33 with its receptors. Proc. Natl. Acad. Sci. USA 110, 14918–14923 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Martin, M.U. Special aspects of interleukin-33 and the IL-33 receptor complex. Semin. Immunol. 25, 449–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Hayakawa, H., Hayakawa, M., Kume, A. & Tominaga, S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem. 282, 26369–26380 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Garlanda, C., Riva, F., Bonavita, E. & Mantovani, A. Negative regulatory receptors of the IL-1 family. Semin. Immunol. 25, 408–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Shimpo, M. et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation 109, 2186–2190 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Pascual-Figal, D.A. & Januzzi, J.L. The biology of ST2: the international ST2 consensus panel. Am. J. Cardiol. 115 (suppl.), 3B–7B (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Mueller, T. & Jaffe, A.S. Soluble ST2—analytical considerations. Am. J. Cardiol. 115 (suppl.), 8B–21B (2015).

    Article  PubMed  Google Scholar 

  85. Drube, S. et al. The receptor tyrosine kinase c-Kit controls IL-33 receptor signaling in mast cells. Blood 115, 3899–3906 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Klemenz, R., Hoffmann, S. & Werenskiold, A.K. Serum- and oncoprotein-mediated induction of a gene with sequence similarity to the gene encoding carcinoembryonic antigen. Proc. Natl. Acad. Sci. USA 86, 5708–5712 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tominaga, S. A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett. 258, 301–304 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Superti-Furga, G., Bergers, G., Picard, D. & Busslinger, M. Hormone-dependent transcriptional regulation and cellular transformation by Fos-steroid receptor fusion proteins. Proc. Natl. Acad. Sci. USA 88, 5114–5118 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lanahan, A., Williams, J.B., Sanders, L.K. & Nathans, D. Growth factor–induced delayed early response genes. Mol. Cell. Biol. 12, 3919–3929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yanagisawa, K., Takagi, T., Tsukamoto, T., Tetsuka, T. & Tominaga, S. Presence of a novel primary response gene ST2L, encoding a product highly similar to the interleukin 1 receptor type 1. FEBS Lett. 318, 83–87 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Gächter, T., Werenskiold, A.K. & Klemenz, R. Transcription of the interleukin-1 receptor-related T1 gene is initiated at different promoters in mast cells and fibroblasts. J. Biol. Chem. 271, 124–129 (1996).

    Article  PubMed  Google Scholar 

  92. Löhning, M. et al. T1/ST2 is preferentially expressed on murine TH2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for TH2 effector function. Proc. Natl. Acad. Sci. USA 95, 6930–6935 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Guo, L. et al. IL-1 family members and STAT activators induce cytokine production by TH2, TH17, and TH1 cells. Proc. Natl. Acad. Sci. USA 106, 13463–13468 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bonilla, W.V. et al. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science 335, 984–989 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Baumann, C. et al. T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral TH1 cell responses. Proc. Natl. Acad. Sci. USA 112, 4056–4061 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Spooner, C.J. et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat. Immunol. 14, 1229–1236 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Zhao, J. et al. Focal adhesion kinase-mediated activation of glycogen synthase kinase-3β regulates IL-33 receptor internalization and IL-33 signaling. J. Immunol. 194, 795–802 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Zhao, J. et al. F-box protein FBXL19-mediated ubiquitination and degradation of the receptor for IL-33 limits pulmonary inflammation. Nat. Immunol. 13, 651–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Connolly, D.J., O'Neill, L.A. & McGettrick, A.F. The GOLD domain-containing protein TMED1 is involved in interleukin-33 signaling. J. Biol. Chem. 288, 5616–5623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McGettrick, A.F. & O'Neill, L.A. Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr. Opin. Immunol. 22, 20–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Schmieder, A., Multhoff, G. & Radons, J. Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine 60, 514–521 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Järås, M. et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc. Natl. Acad. Sci. USA 107, 16280–16285 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Barreyro, L. et al. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood 120, 1290–1298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pinto, S.M. et al. Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532–544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maywald, R.L. et al. IL-33 activates tumor stroma to promote intestinal polyposis. Proc. Natl. Acad. Sci. USA 112, E2487–E2496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pollheimer, J. et al. Interleukin-33 drives a proinflammatory endothelial activation that selectively targets nonquiescent cells. Arterioscler. Thromb. Vasc. Biol. 33, e47–e55 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Oboki, K. et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl. Acad. Sci. USA 107, 18581–18586 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kim, H.Y. et al. Innate lymphoid cells responding to IL-33 mediate airway-hyperreactivity independent of adaptive immunity. J. Allergy Clin. Immunol. 129, 216–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Lei, Y. et al. Vaccination against IL-33 inhibits airway hyperresponsiveness and inflammation in a house dust mite model of asthma. PLoS ONE 10, e0133774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu, D. et al. IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc. Natl. Acad. Sci. USA 105, 10913–10918 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Palmer, G. et al. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum. 60, 738–749 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Martin, P. et al. Disease severity in K/BxN serum transfer-induced arthritis is not affected by IL-33 deficiency. Arthritis Res. Ther. 15, R13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Talabot-Ayer, D. et al. Immune-mediated experimental arthritis in IL-33–deficient mice. Cytokine 69, 68–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, X. et al. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem. Biophys. Res. Commun. 386, 181–185 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Lee, J.S., Seppanen, E., Patel, J., Rodero, M.P. & Khosrotehrani, K. ST2 receptor invalidation maintains wound inflammation, delays healing and increases fibrosis. Exp. Dermatol. (2015).

  117. Lunderius-Andersson, C., Enoksson, M. & Nilsson, G. Mast cells respond to cell injury through the recognition of IL-33. Front. Immunol. 3, 82 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hammad, H. & Lambrecht, B.N. Barrier epithelial cells and the control of type 2 immunity. Immunity 43, 29–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Divekar, R. & Kita, H. Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr. Opin. Allergy Clin. Immunol. 15, 98–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rank, M.A. et al. IL-33–activated dendritic cells induce an atypical TH2-type response. J. Allergy Clin. Immunol. 123, 1047–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Besnard, A.-G.G. et al. IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur. J. Immunol. 41, 1675–1686 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Matta, B.M. et al. IL-33 is an unconventional Alarmin that stimulates IL-2 secretion by dendritic cells to selectively expand IL-33R/ST2+ regulatory T cells. J. Immunol. 193, 4010–4020 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Williams, J.W. et al. Transcription factor IRF4 drives dendritic cells to promote TH2 differentiation. Nat. Commun. 4, 2990 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Tjota, M.Y. et al. Signaling through FcRγ-associated receptors on dendritic cells drives IL-33–dependent TH2-type responses. J. Allergy Clin. Immunol. 134, 706–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Turnquist, H.R.R. & Thomson, A.W. IL-33 broadens its repertoire to affect DC. Eur. J. Immunol. 39, 3292–3295 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Turnquist, H.R. et al. IL-33 expands suppressive CD11b+ Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J. Immunol. 187, 4598–4610 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Morita, H. et al. An interleukin-33–mast cell–interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 43, 175–186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hueber, A.J. et al. IL-33 induces skin inflammation with mast cell and neutrophil activation. Eur. J. Immunol. 41, 2229–2237 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Enoksson, M. et al. Intraperitoneal influx of neutrophils in response to IL-33 is mast cell-dependent. Blood 121, 530–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Komai-Koma, M. et al. IL-33 activates B1 cells and exacerbates contact sensitivity. J. Immunol. 186, 2584–2591 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Ahmed, A. & Koma, M.K. Interleukin-33 triggers B1 cell expansion and its release of monocyte/macrophage chemoattractants and growth factors. Scand. J. Immunol. 82, 118–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Sattler, S. et al. IL-10–producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut. J. Autoimmun. 50, 107–122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kurokawa, M. et al. Expression and effects of IL-33 and ST2 in allergic bronchial asthma: IL-33 induces eotaxin production in lung fibroblasts. Int. Arch. Allergy Immunol. 155 Suppl 1, 12–20 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Bianchetti, L. et al. IL-33 promotes the migration and proliferation of circulating fibrocytes from patients with allergen-exacerbated asthma. Biochem. Biophys. Res. Commun. 426, 116–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Hayashi, H. et al. IL-33 enhanced the proliferation and constitutive production of IL-13 and IL-5 by fibrocytes. BioMed Res. Int. 2014, 738625 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Kouzaki, H., Iijima, K., Kobayashi, T., O'Grady, S.M. & Kita, H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J. Immunol. 186, 4375–4387 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Byers, D.E. et al. Long-term IL-33–producing epithelial progenitor cells in chronic obstructive lung disease. J. Clin. Invest. 123, 3967–3982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Holtzman, M.J. et al. Linking acute infection to chronic lung disease. The role of IL-33–expressing epithelial progenitor cells. Ann. Am. Thorac. Soc. 11 (suppl. 5), S287–S291 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Paris, G., Pozharskaya, T., Asempa, T. & Lane, A.P. Damage-associated molecular patterns stimulate interleukin-33 expression in nasal polyp epithelial cells. Int. Forum Allergy Rhinol. 4, 15–21 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhang, L., Lu, R., Zhao, G., Pflugfelder, S.C. & Li, D.-Q.Q. TLR-mediated induction of pro-allergic cytokine IL-33 in ocular mucosal epithelium. Int. J. Biochem. Cell Biol. 43, 1383–1391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Seidelin, J.B. et al. IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol. Lett. 128, 80–85 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Nomura, K. et al. Regulation of interleukin-33 and thymic stromal lymphopoietin in human nasal fibroblasts by proinflammatory cytokines. Laryngoscope 122, 1185–1192 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Sponheim, J. et al. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. Am. J. Pathol. 177, 2804–2815 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Byrne, S.N., Beaugie, C., O'Sullivan, C., Leighton, S. & Halliday, G.M. The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. Am. J. Pathol. 179, 211–222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wood, I.S., Wang, B. & Trayhurn, P. IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes. Biochem. Biophys. Res. Commun. 384, 105–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Saidi, S. et al. IL-33 is expressed in human osteoblasts, but has no direct effect on bone remodeling. Cytokine 53, 347–354 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Hudson, C.A. et al. Induction of IL-33 expression and activity in central nervous system glia. J. Leukoc. Biol. 84, 631–643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kempuraj, D. et al. Glia maturation factor induces interleukin-33 release from astrocytes: implications for neurodegenerative diseases. J. Neuroimmune Pharmacol. 8, 643–650 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yasuoka, S. et al. Production and functions of IL-33 in the central nervous system. Brain Res. 1385, 8–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Hu, W.T. et al. IL-33 enhances proliferation and invasiveness of decidual stromal cells by up-regulation of CCL2/CCR2 via NF-κB and ERK1/2 signaling. Mol. Hum. Reprod. 20, 358–372 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Arshad, M.I. et al. TRAIL but not FasL and TNFα, regulates IL-33 expression in murine hepatocytes during acute hepatitis. Hepatology 56, 2353–2362 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Arshad, M.I. et al. Pathogenic mouse hepatitis virus or poly(I:C) induce IL-33 in hepatocytes in murine models of hepatitis. PLoS ONE 8, e74278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Arshad, M.I. et al. NKT cells are required to induce high IL-33 expression in hepatocytes during ConA-induced acute hepatitis. Eur. J. Immunol. 41, 2341–2348 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Kim, L.K. et al. AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites. Proc. Natl. Acad. Sci. USA 112, E2891–E2899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Préfontaine, D. et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J. Immunol. 183, 5094–5103 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Ohno, T. et al. Caspase-1, caspase-8, and calpain are dispensable for IL-33 release by macrophages. J. Immunol. 183, 7890–7897 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Nile, C.J., Barksby, E., Jitprasertwong, P., Preshaw, P.M. & Taylor, J.J. Expression and regulation of interleukin-33 in human monocytes. Immunology 130, 172–180 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Yanagawa, Y., Suzuki, M., Matsumoto, M. & Togashi, H. Prostaglandin E(2) enhances IL-33 production by dendritic cells. Immunol. Lett. 141, 55–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Yanagawa, Y., Matsumoto, M. & Togashi, H. Adrenoceptor-mediated enhancement of interleukin-33 production by dendritic cells. Brain Behav. Immun. 25, 1427–1433 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Hsu, C.-L.L., Neilsen, C.V. & Bryce, P.J. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS ONE 5, e11944 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael U Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, N., Martin, M. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol 17, 122–131 (2016). https://doi.org/10.1038/ni.3370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing