Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE

Abstract

Interleukin 17–producing T helper cells (TH-17 cells) are important in experimental autoimmune encephalomyelitis, but their route of entry into the central nervous system (CNS) and their contribution relative to that of other effector T cells remain to be determined. Here we found that mice lacking CCR6, a chemokine receptor characteristic of TH-17 cells, developed TH-17 responses but were highly resistant to the induction of experimental autoimmune encephalomyelitis. Disease susceptibility was reconstituted by transfer of wild-type T cells that entered into the CNS before disease onset and triggered massive CCR6-independent recruitment of effector T cells across activated parenchymal vessels. The CCR6 ligand CCL20 was constitutively expressed in epithelial cells of choroid plexus in mice and humans. Our results identify distinct molecular requirements and ports of lymphocyte entry into uninflamed versus inflamed CNS and suggest that the CCR6-CCL20 axis in the choroid plexus controls immune surveillance of the CNS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CCR6-deficient mice are resistant to EAE induction.
Figure 2: Transfer of wild-type 2D2 T cells reconstitutes EAE susceptibility in CCR6-knockout mice.
Figure 3: Recruitment of endogenous effector T cells into the CNS of CCR6-knockout mice after transfer of 2D2 T cells.
Figure 4: CCR6 is not required for T cell rolling and the adhesion of T cells to inflamed brain endothelia.
Figure 5: CCR6 is required for the migration of T cells into the CNS through CCL20-expressing epithelial cells of the choroid plexus in the steady state and at early time points of EAE.
Figure 6: Expression of CCL20 and CCR6 in human normal tissue and multiple sclerosis tissues.

Similar content being viewed by others

References

  1. McGeachy, M.J. & Cua, D.J. Th17 cell differentiation: the long and winding road. Immunity 28, 445–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Bettelli, E., Korn, T., Oukka, M. & Kuchroo, V.K. Induction and effector functions of TH17 cells. Nature 453, 1051–1057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8, 337–348 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Weaver, C.T., Hatton, R.D., Mangan, P.R. & Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Gaffen, S.L. An overview of IL-17 function and signaling. Cytokine 43, 402–407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Hofstetter, H.H. et al. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell. Immunol. 237, 123–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tzartos, J.S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luger, D. et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J. Exp. Med. 205, 799–810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kroenke, M.A., Carlson, T.J., Andjelkovic, A.V. & Segal, B.M. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 205, 1535–1541 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stromnes, I.M., Cerretti, L.M., Liggitt, D., Harris, R.A. & Goverman, J.M. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14, 337–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lees, J.R., Golumbek, P.T., Sim, J., Dorsey, D. & Russell, J.H. Regional CNS responses to IFN-γ determine lesion localization patterns during EAE pathogenesis. J. Exp. Med. 205, 2633–2642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Engelhardt, B. & Ransohoff, R.M. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 26, 485–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Yednock, T.A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Engelhardt, B., Vestweber, D., Hallmann, R. & Schulz, M. E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90, 4459–4472 (1997).

    CAS  PubMed  Google Scholar 

  20. Carrithers, M.D., Visintin, I., Kang, S.J. & Janeway, C.A. Jr. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123, 1092–1101 (2000).

    Article  PubMed  Google Scholar 

  21. Piccio, L. et al. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric Gi-linked receptors. J. Immunol. 168, 1940–1949 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Vajkoczy, P., Laschinger, M. & Engelhardt, B. α4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest. 108, 557–565 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Engelhardt, B., Wolburg-Buchholz, K. & Wolburg, H. Involvement of the choroid plexus in central nervous system inflammation. Microsc. Res. Tech. 52, 112–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Ransohoff, R.M., Kivisakk, P. & Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3, 569–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Giunti, D. et al. Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J. Leukoc. Biol. 73, 584–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Steffen, B.J., Breier, G., Butcher, E.C., Schulz, M. & Engelhardt, B. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am. J. Pathol. 148, 1819–1838 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pedemonte, E. et al. Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases. Pharmacol. Ther. 111, 555–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Bromley, S.K., Mempel, T.R. & Luster, A.D. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat. Immunol. 9, 970–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Rossi, D.L., Vicari, A.P., Franz-Bacon, K., McClanahan, T.K. & Zlotnik, A. Identification through bioinformatics of two new macrophage proinflammatory human chemokines: MIP-3α and MIP-3β. J. Immunol. 158, 1033–1036 (1997).

    CAS  PubMed  Google Scholar 

  30. Acosta-Rodriguez, E.V. et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Cook, D.N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Greaves, D.R. et al. CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3α and is highly expressed in human dendritic cells. J. Exp. Med. 186, 837–844 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown, D.A. & Sawchenko, P.E. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J. Comp. Neurol. 502, 236–260 (2007).

    Article  PubMed  Google Scholar 

  34. Kivisakk, P. et al. Localizing central nervous system immune surveillance: Meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. published online, doi:10.1002/ana.21379 (21 May 2008).

  35. Hickey, W.F., Hsu, B.L. & Kimura, H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28, 254–260 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Flugel, A. et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14, 547–560 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Hirota, K. et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204, 2803–2812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khader, S.A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Steinman, L. A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry. Proc. Natl. Acad. Sci. USA 93, 2253–2256 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O'Connor, R.A. et al. Cutting Edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 181, 3750–3754 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Kebir, H. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 179, 8098–8104 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Haak, S. et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 119, 61–69 (2009).

    CAS  PubMed  Google Scholar 

  44. Charo, I.F. & Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Balashov, K.E., Rottman, J.B., Weiner, H.L. & Hancock, W.W. CCR5+ and CXCR3+ T cells are increased in multiple sclerosis and their ligands MIP-1α and IP-10 are expressed in demyelinating brain lesions. Proc. Natl. Acad. Sci. USA 96, 6873–6878 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ambrosini, E., Columba-Cabezas, S., Serafini, B., Muscella, A. & Aloisi, F. Astrocytes are the major intracerebral source of macrophage inflammatory protein-3α/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia 41, 290–300 (2003).

    Article  PubMed  Google Scholar 

  47. Columba-Cabezas, S., Serafini, B., Ambrosini, E. & Aloisi, F. Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol. 13, 38–51 (2003).

    Article  PubMed  Google Scholar 

  48. Rottman, J.B. et al. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur. J. Immunol. 30, 2372–2377 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Muller, M. et al. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J. Immunol. 179, 2774–2786 (2007).

    Article  PubMed  Google Scholar 

  50. Liu, L. et al. Severe disease, unaltered leukocyte migration, and reduced IFN-γ production in CXCR3−/− mice with experimental autoimmune encephalomyelitis. J. Immunol. 176, 4399–4409 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Gaupp, S., Pitt, D., Kuziel, W.A., Cannella, B. & Raine, C.S. Experimental autoimmune encephalomyelitis (EAE) in CCR2−/− mice: susceptibility in multiple strains. Am. J. Pathol. 162, 139–150 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Eltayeb, S. et al. Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE. J. Neuroinflammation 4, 14 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Matsui, M. et al. Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. J. Neuroimmunol. 128, 16–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Kohler, R.E., Caon, A.C., Willenborg, D.O., Clark-Lewis, I. & McColl, S.R. A role for macrophage inflammatory protein-3α/CC chemokine ligand 20 in immune priming during T cell-mediated inflammation of the central nervous system. J. Immunol. 170, 6298–6306 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Franciotta, D., Salvetti, M., Lolli, F., Serafini, B. & Aloisi, F. B cells and multiple sclerosis. Lancet Neurol. 7, 852–858 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Kleinewietfeld, M. et al. CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset. Blood 105, 2877–2886 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Yamazaki, T. et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 181, 8391–8401 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Steinman, L. A rush to judgment on Th17. J. Exp. Med. 205, 1517–1522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sigmundsdottir, H. & Butcher, E.C. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat. Immunol. 9, 981–987 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hickey, W.F. Basic principles of immunological surveillance of the normal central nervous system. Glia 36, 118–124 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Jarrossay for cell sorting; T. Périnat and S. Minghelli for immunohistology analysis; E. Mira Catò and L. Perlini for technical assistance; B. Becher (University Hospital Zurich), C. Gerard (Harvard Medical School), J. Kirberg (Max-Plank Institute of Immunobiology) and M. Lipp (Max Delbruck Center) for mouse strains; L. Sallusto for discussions and support; and A. Almeida, A. Martín-Fontecha, G. Napolitani, U. Schenk and M. Uguccioni for discussions. Supported by the Swiss National Science Foundation (31-101962 to F.S.), the European Commission Sixth Framework Programme (LSB-CT-2005-518167 IINOCHEM and LSHG-CT-2005-005203 MUGEN), the US National Multiple Sclerosis Society (B.E. and C.C.), the Swiss Multiple Sclerosis Society, the Italian Foundation for Multiple Sclerosis (Stem Cell Project 2007-2009), the European Union-funded International Graduate Program in Molecular Medicine (A.R.), Boehringer Ingelheim Fonds (D.B.) and the Helmut Horten Foundation (to The Institute for Research in Biomedicine).

Author information

Authors and Affiliations

Authors

Contributions

A.R. did most of the experiments and contributed to experimental design; C.C., D. Baumjohann, F.B. and D. Bottinelli did experiments; S.L. generated the CCR6-knockout mice and provided intellectual input; B.E. and A.U. interpreted data, provided intellectual input and contributed to writing the manuscript; A.L. provided intellectual input and wrote the manuscript; and F.S. conceived the study, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Federica Sallusto.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 577 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reboldi, A., Coisne, C., Baumjohann, D. et al. C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10, 514–523 (2009). https://doi.org/10.1038/ni.1716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing