Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis

Abstract

Mutations in Rpe65 disrupt synthesis of the opsin chromophore ligand 11-cis-retinal and cause Leber congenital amaurosis (LCA), a severe, early-onset retinal dystrophy. To test whether light-independent signaling by unliganded opsin causes the degeneration, we used Rpe65-null mice, a model of LCA. Dark-adapted Rpe65−/− mice behaved as if light adapted, exhibiting reduced circulating current, accelerated response turn-off, and diminished intracellular calcium. A genetic block of transducin signaling completely rescued degeneration irrespective of an elevated level of retinyl ester. These studies clearly show that activation of sensory transduction by unliganded opsin, and not the accumulation of retinyl esters, causes light-independent retinal degeneration in LCA. A similar mechanism may also be responsible for degeneration induced by vitamin A deprivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transduction and cyclic nucleotide–gated channel activity in rods.
Figure 2: Photoresponse amplitude and light sensitivity of Rpe65−/− rods are reduced.
Figure 4: Rpe65−/− rods have accelerated response kinetics.
Figure 3: Rods from Rpe65−/− mice show light saturation behavior and have functional cGMP channels.
Figure 5: Abrogation of transducin signaling protects Rpe65−/− mice from retinal degeneration, but dark-rearing does not.
Figure 6: Retinyl ester levels in wild-type (WT), Rpe65−/− and Rpe65−/− Gnat1−/− mice.
Figure 7: Free Ca2+ concentration in rods from wild-type (WT; blue), Rpe65−/− (red) and Rpe65−/− Gnat1−/− (black) mice.

Similar content being viewed by others

References

  1. Morimura, H. et al. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc. Natl. Acad. Sci. USA 95, 3088–3093 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gu, S.M. et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 17, 194–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Marlhens, F. et al. Mutations in RPE65 cause Leber's congenital amaurosis. Nat. Genet. 17, 139–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Felius, J. et al. Clinical course and visual function in a family with mutations in the RPE65 gene. Arch. Ophthalmol. 120, 55–61 (2002).

    Article  PubMed  Google Scholar 

  5. Lorenz, B. et al. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest. Ophthalmol. Vis. Sci. 41, 2735–2742 (2000).

    CAS  PubMed  Google Scholar 

  6. Redmond, T.M. et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 20, 344–351 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Seeliger, M.W. et al. New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat. Genet. 29, 70–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Ablonczy, Z. et al. 11-cis-retinal reduces constitutive opsin phosphorylation and improves quantum catch in retinoid-deficient mouse rod photoreceptors. J. Biol. Chem. 277, 40491–40498 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Rohrer, B. et al. Correlation of regenerable opsin with rod ERG signal in Rpe65−/− mice during development and aging. Invest. Ophthalmol. Vis. Sci. 44, 310–315 (2003).

    Article  PubMed  Google Scholar 

  10. Van Hooser, J.P. et al. Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc. Natl. Acad. Sci. USA 97, 8623–8628 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Hooser, J.P. et al. Recovery of visual functions in a mouse model of Leber congenital amaurosis. J. Biol. Chem. 277, 19173–19182 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Surya, A. & Knox, B. Modulation of opsin apoprotein activity by retinal. Dark activity of rhodopsin formed at low temperature. J. Biol. Chem. 272, 21745–21750 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Cornwall, M.C. & Fain, G.L. Bleached pigment activates transduction in isolated rods of the salamander retina. J. Physiol. 480, 261–279 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cornwall, M.C., Matthews, H.R., Crouch, R.K. & Fain, G.L. Bleached pigment activates transduction in salamander cones. J. Gen. Physiol. 106, 543–557 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Melia, T.J., Jr., Cowan, C.W., Angleson, J.K. & Wensel, T.G. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin. Biophys. J. 73, 3182–3191 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fain, G.L. & Lisman, J.E. Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: the equivalent light hypothesis. Exp. Eye Res. 57, 335–340 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Fain, G.L. & Lisman, J.E. Light, Ca2+, and photoreceptor death: new evidence for the equivalent-light hypothesis from arrestin knockout mice. Invest. Ophthalmol. Vis. Sci. 40, 2770–2772 (1999).

    CAS  PubMed  Google Scholar 

  18. Jin, S., Cornwall, M.C. & Oprian, D.D. Opsin activation as a cause of congenital night blindness. Nat. Neurosci. 6, 731–735 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Hao, W. et al. Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat. Genet. 32, 254–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Baylor, D.A., Lamb, T.D. & Yau, K.W. The membrane current of single rod outer segments. J. Physiol. 288, 589–611 (1979).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Beavo, J.A. et al. Effects of xanthine derivatives on lipolysis and on adenosine 3′,5′- monophosphate phosphodiesterase activity. Mol. Pharmacol. 6, 597–603 (1970).

    CAS  PubMed  Google Scholar 

  22. Cervetto, L. & McNaughton, P.A. The effects of phosphodiesterase inhibitors and lanthanum ions on the light-sensitive current of toad retinal rods. J. Physiol. 370, 91–109 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cornwall, M.C., Fein, A. & MacNichol, E.F., Jr. Cellular mechanisms that underlie bleaching and background adaptation. J. Gen. Physiol. 96, 345–372 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Fain, G.L., Matthews, H.R., Cornwall, M.C. & Koutalos, Y. Adaptation in vertebrate photoreceptors. Physiol. Rev. 81, 117–151 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, C.K. et al. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 403, 557–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Calvert, P.D. et al. Phototransduction in transgenic mice after targeted deletion of the rod transducin α-subunit. Proc. Natl. Acad. Sci. USA 97, 13913–13918 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sampath, A.P., Matthews, H.R., Cornwall, M.C. & Fain, G.L. Bleached pigment produces a maintained decrease in outer segment Ca2+ in salamander rods. J. Gen. Physiol. 111, 53–64 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Woodruff, M.L. et al. Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J. Physiol. 542, 843–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franklin, J.L., Sanz-Rodriguez, C., Juhasz, A., Deckwerth, T.L. & Johnson, E.M. Jr. Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for Ca2+ influx but not Trk activation. J. Neurosci. 15, 643–664 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sampath, A.P., Matthews, H.R., Cornwall, M.C., Bandarchi, J. & Fain, G.L. Light-dependent changes in outer segment free-Ca2+ concentration in salamander cone photoreceptors. J. Gen. Physiol. 113, 267–277 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matthews, H.R. & Fain, G.L. The effect of light on outer segment calcium in salamander rods. J. Physiol. (in the press).

  32. Sokolov, M. et al. Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron 33, 95–106 (2002).

    Article  Google Scholar 

  33. Mendez, A., Lem, J., Simon, M. & Chen, J. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling. J. Neurosci. 23, 3124–3129 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dowling, J.E. & Wald, G. Vitamin A deficiency and night blindness. Proc. Natl. Acad. Sci. USA 44, 648–661 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dowling, J.E. & Wald, G. The biological activity of vitamin A acid. Proc. Natl. Acad. Sci. USA 46, 587–608 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dartnall, H.J.A. Photosensitivity. in Handbook of Sensory Physiology vol. VII/1 (ed. Dartnall, H.J.A.) 122–145 (Springer, Berlin, 1972).

    Google Scholar 

  37. Jones, G.J., Fein, A., MacNichol, E.F., Jr., & Cornwall, M.C. Visual pigment bleaching in isolated salamander retinal cones. Microspectrophotometry and light adaptation. J. Gen. Physiol. 102, 483–502 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Tang, G., Dolnikowski, G.G., Blanco, M.C., Fox, J.G. & Russel, R.M. Serum carotenoids and retinoids in ferrets fed canthaxanthin. J. Nutr. Biochem. 4, 58–63 (1993).

    Article  CAS  Google Scholar 

  39. Garwin, G.G. & Saari, J.C. High-performance liquid chromatography analysis of visual cycle retinoids. Meth. Enzymol. 316, 313–324 (2000).

    Article  CAS  Google Scholar 

  40. Carter-Dawson, L. et al. Rhodopsin, 11-cis vitamin A, and interstitial retinol-binding protein (IRBP) during retinal development in normal and rd mutant mice. Dev. Biol. 116, 431–438 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Palczewski, K. et al. Kinetics of visual pigment regeneration in excised mouse eyes and in mice with a targeted disruption of the gene encoding interphotoreceptor retinol-binding protein or arrestin. Biochemistry 38, 12012–12019 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Matthews, H.R. & Fain, G.L. Time course and magnitude of the calcium release induced by bright light in salamander rods. J. Physiol. 542, 829–841 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Cilluffo for help with animal care, M. Fain for drawing Fig. 1, F. Celestin for assistance with histological sections, M. C. Cornwall and H. R. Matthews for assistance with early experiments and M. S. Obin for discussion and comments. Support for this research was provided by the US National Institutes of Health (to G.L.F., J.L. and Z.W.; Core Grants for Vision Research to the Jules Stein Eye Institute and Tufts Center for Vision Research) and the Massachusetts Lions Eye Research Fund (an institutional grant to the Department of Ophthalmology, New England Medical Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janis Lem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodruff, M., Wang, Z., Chung, H. et al. Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Nat Genet 35, 158–164 (2003). https://doi.org/10.1038/ng1246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing